
Abstraction Barriers and Properties of
Data in Python

Abstraction Barriers

Before continuing with more examples of compound data and data abstraction, let us
consider some of the issues raised by the rational number example. We defined
operations in terms of a constructor rational and selectors numer and denom. In general,
the underlying idea of data abstraction is to identify for each type of value a basic set of
operations in terms of which all manipulations of values of that type will be expressed,
and then to use only those operations in manipulating the data.

We can envision the structure of the rational number system as a series of layers.

The horizontal lines represent abstraction barriers that isolate different levels of the
system. At each level, the barrier separates the functions (above) that use the data
abstraction from the functions (below) that implement the data abstraction. Programs
that use rational numbers manipulate them solely in terms of the their arithmetic
functions: add_rationals, mul_rationals, andeq_rationals. These, in turn, are

http://inst.eecs.berkeley.edu/~cs61A/book/chapters/objects.html#id8
http://inst.eecs.berkeley.edu/~cs61A/book/chapters/objects.html#id9
http://inst.eecs.berkeley.edu/~cs61A/book/chapters/objects.html#id9
http://inst.eecs.berkeley.edu/~cs61A/book/chapters/objects.html#id9
http://inst.eecs.berkeley.edu/~cs61A/book/chapters/objects.html#id8

implemented solely in terms of the constructor and selectors rational, numer,
and denom, which themselves are implemented in terms of tuples. The details of how
tuples are implemented are irrelevant to the rest of the layers as long as tuples enable
the implementation of the selectors and constructor.

At each layer, the functions within the box enforce the abstraction boundary because
they are the only functions that depend upon both the representation above them (by
their use) and the implementation below them (by their definitions). In this way,
abstraction barriers are expressed as sets of functions.

Abstraction barriers provide many advantages. One advantage is that they makes
programs much easier to maintain and to modify. The fewer functions that depend on a
particular representation, the fewer changes are required when one wants to change
that representation.

The Properties of Data

We began the rational-number implementation by implementing arithmetic operations in
terms of three unspecified functions:rational, numer, and denom. At that point, we could
think of the operations as being defined in terms of data objects --- numerators,
denominators, and rational numbers --- whose behavior was specified by the latter three
functions.

But what exactly is meant by data? It is not enough to say "whatever is implemented by
the given selectors and constructors." We need to guarantee that these functions
together specify the right behavior. That is, if we construct a rational number x from
integersn and d, then it should be the case that numer(x)/denom(x) is equal to n/d.

In general, we can think of an abstract data type as defined by some collection of
selectors and constructors, together with some behavior conditions. As long as the
behavior conditions are met (such as the division property above), these functions
constitute a valid representation of the data type.

http://inst.eecs.berkeley.edu/~cs61A/book/chapters/objects.html#id9

This point of view can be applied to other data types as well, such as the two-element
tuple that we used in order to implement rational numbers. We never actually said much
about what a tuple was, only that the language supplied operators to create and
manipulate tuples. We can now describe the behavior conditions of two-element tuples,
also called pairs, that are relevant to the problem of representing rational numbers.

In order to implement rational numbers, we needed a form of glue for two integers,
which had the following behavior:

• If a pair p was constructed from values x and y, then getitem_pair(p,
0) returns x, and getitem_pair(p, 1)returns y.

We can implement functions pair and getitem_pair that fulfill this description just as
well as a tuple.

>>> def pair(x, y):
 """Return a function that behaves like a two-
element tuple."""
 def dispatch(m):
 if m == 0:
 return x
 elif m == 1:
 return y
 return dispatch
>>> def getitem_pair(p, i):
 """Return the element at index i of pair p."""
 return p(i)

With this implementation, we can create and manipulate pairs.

>>> p = pair(20, 12)
>>> getitem_pair(p, 0)
20
>>> getitem_pair(p, 1)
12

This use of functions corresponds to nothing like our intuitive notion of what data should
be. Nevertheless, these functions suffice to represent compound data in our programs.

The subtle point to notice is that the value returned by pair is a function
called dispatch, which takes an argument m and returns either x or y.
Then, getitem_pair calls this function to retrieve the appropriate value. We will return to
the topic of dispatch functions several times throughout this chapter.

The point of exhibiting the functional representation of a pair is not that Python actually
works this way (tuples are implemented more directly, for efficiency reasons) but that it
could work this way. The functional representation, although obscure, is a perfectly
adequate way to represent pairs, since it fulfills the only conditions that pairs need to
fulfill. This example also demonstrates that the ability to manipulate functions as values
automatically provides us the ability to represent compound data.

Parithy
Typewritten Text
Source : http://inst.eecs.berkeley.edu/~cs61A/book/chapters/objects.html#abstraction-barriers

	Abstraction Barriers and Properties of Data in Python
	Abstraction Barriers
	The Properties of Data

