
A MODULE’S NAME

Byte-compiled .pyc files

Importing a module is a relatively costly affair, so Python does some tricks to make

it faster. One way is to create byte-compiled files with the extension .pyc which is

an intermediate form that Python transforms the program into (remember

the introduction section on how Python works?). This .pyc file is useful when you

import the module the next time from a different program - it will be much faster

since a portion of the processing required in importing a module is already done.

Also, these byte-compiled files are platform-independent.

NOTE

These .pyc files are usually created in the same directory as the

corresponding .py files. If Python does not have permission to write

to files in that directory, then the .pyc files will not be created.

http://www.swaroopch.com/notes/python/#module_name
http://www.swaroopch.com/notes/python/#pyc
http://www.swaroopch.com/notes/python/#interpreted

The from … import statement

If you want to directly import the argv variable into your program (to avoid typing

the sys. everytime for it), then you can use the from sys import argv statement.

In general, you should avoid using this statement and use the import statement

instead since your program will avoid name clashes and will be more readable.

Example:

from math import sqrt

print "Square root of 16 is", sqrt(16)

A module’s name

Every module has a name and statements in a module can find out the name of their

module. This is handy for the particular purpose of figuring out whether the module

is being run standalone or being imported. As mentioned previously, when a module

is imported for the first time, the code it contains gets executed. We can use this to

make the module behave in different ways depending on whether it is being used by

itself or being imported from another module. This can be achieved using

the name attribute of the module.

http://www.swaroopch.com/notes/python/#the_from_import_statement
http://www.swaroopch.com/notes/python/#module_name

Example (save as module_using_name.py):

if __name__ == '__main__':

 print 'This program is being run by itself'

else:

 print 'I am being imported from another module'

Output:

$ python module_using_name.py

This program is being run by itself

$ python

>>> import module_using_name

I am being imported from another module

>>>

How It Works

Every Python module has its name defined. If this is 'main', that implies that the

module is being run standalone by the user and we can take appropriate actions.

Source: http://www.swaroopch.com/notes/python/

