
By: Daniel Herrington

I’ve been interested in robotics since I was a little boy.
Back when I was in junior high school, I built a mobile
robot platform out of the drive portion of a child’s
motorized car and a Commodore VIC-20. Over the
years, advances in technology have made experiment-
ing with robotics more enjoyable. The Game Boy
Camera is an ingenious addition to the Game Boy
Color game unit that came out a couple of years ago.
It’s a black-and-white digital camera with a resolution
of 123 x 128 pixels, operating at a rate of one to 30
frames per second.

The camera’s original price was between $40 and
$50, making it somewhat cost-prohibitive for hobby-
ists. However, because the product was recently dis-
continued, I found some on eBay selling for between
$10 and $20. The reduced price makes the camera an
attractive solution if you’re interested in robot naviga-
tion. It’s even less costly than a single Polaroid sonar
module ($30 to $50) and in the same ballpark as
reflective infrared sensors ($5 to $15).

The sensor inside the camera is a highly integrated
CMOS array with built-in edge enhancement and
extraction. Built-in image processing enables a micro-
controller to perform object detection and tracking,
provided certain assumptions about the background of
the image are valid.

Atmel’s AT90S8515 microcontroller has an external
memory interface bus that allows you to easily connect
an SRAM IC. The on-chip hardware UART makes it
possible to output processed data without consuming
precious processing resources, and the timers enable
it to control hobby servo motors without much work. In
addition, the AVR series of microcontrollers has a high-
speed RISC architecture (e.g., most instructions take
one or two clock cycles) that makes timing calcula-
tions simple. In short, the flexibility of the AVR 8-bit
microcontrollers makes attaching special-purpose
peripherals like the Game Boy Camera a breeze.

Figure 1 is a block diagram of a camera interface and
object-tracking system. As you can see, the camera is
controlled via some of the microcontroller’s general-
purpose I/O pins. The analog output of the camera is
attached to the external A/D converter. The servos are
connected to two more pins of the microcontroller, and
the RS-232 converter conditions the UART’s signals
for connection to the outside world.

Figure 2 details the interface circuit. A few notes might
be helpful here. The A/D converter needs to be fast
enough to read out a pixel value every 2 µs if the max-
imum frame rate is desired. This means the sample
frequency of the ADC must be at least 500 kHz. A

speed requirement like this rules out the use of the
built-in ADC on most microcontrollers (e.g., the
AT90S8535).

For my circuit, I settled on the Analog Devices
AD7822, which doesn’t have the added complication
of pipelining that many of the newer ADCs seem to
have. Also, you don’t need the RS-232 converter IC if
the circuit will be interfaced directly to another micro-
controller’s UART. I used a 7.3728 MHz crystal to
achieve compatibility with standard data rates. A
speed of 115,200 bps is the maximum speed that a
standard PC serial port supports, so I programmed the
microcontroller to work at that speed.

The completed prototype circuit board is shown in
Photo 1. It’s a simple wire-wrapped board with all
through-hole components except the ADC. The poten-
tiometer is used to adjust the reference voltage for the
microcontroller’s on-chip analog comparator. The
comparator is used in place of the ADC for the hobby
robot depicted in Photo 2. I found that the optimum
setting for the reference voltage for my test environ-
ment was about 4.66 V.

Photography 101
The Game Boy Camera uses Mitsubishi’s M64282FP
CMOS image sensor. This sensor is special because
Mitsubishi designed some image processing capabili-
ties right into the CMOS array itself.

Software isn’t required to perform edge detection,
enhancement, or extraction from the image. To get an
edge-extracted image, simply put the sensor in the
appropriate mode and then read out the resulting ana-
log pixel voltages for the entire image. After this image
is read out, it can be further manipulated by the micro-
controller. Photo 3 shows the M64282FP chip inside
the camera.

I didn’t use the camera’s cartridge base in these
experiments. After the cartridge is opened, the ball can
be disconnected from the cartridge. I disconnected the
purple cable from the cartridge and soldered a stan-
dard 0.1” double-wide header on the end. This
allowed a 0.050” ribbon cable to be used for a long-
distance connection, although I don’t recommend
exceeding 1 foot or so.

By the way, I cut a hole in the back of the ball so that
the cable could exit in a place where it doesn’t inter-
fere with mounting the camera on a pan-tilt base. You
may download the pinout of the original connector
that’s coming out of the ball from the Circuit Cellar ftp
site. The numbers refer to the corresponding pin num-
bers on the M64282FP chip.

To simplify the interfacing of the assembly code and
speed things up, I turned the camera sensor board in

www.atmel.com page 39

Easy Image Processing:
Camera Interfacing for Robotics

SINCE CHILDHOOD, DANIEL HAS

INCORPORATED HIGH-TECH TOYS

IN HIS ROBOTICS PROJECTS. THUS,

IT’S NO SURPRISE THAT HE USED A

GAME BOY CAMERA IN ONE OF HIS

RECENT DESIGNS. NOW, HE’LL SHOW

YOU HOW TO USE THE CAMERA TO

ENHANCE THE NAVIGATION SYSTEM

ON YOUR OWN MOBILE ROBOT.

Reprinted from
Circuit Cellar #151

or approximately eight microcontroller clock cycles. I
tuned the timing of the assembly code by adding NOP
instructions where appropriate.

It’s interesting to see how different register settings
affect the image output from the camera. Table 1
shows two settings: Normal mode and Edge mode.
These settings were derived by experimentation and
may need to be adjusted for any given environment.

I set up a test area with various medium- and high-con-
trast colored objects on a light-colored floor (see Photo
4). The top-center image frames within Photo 5a on
page 43 show what the Game Boy Camera images look
like with specific register settings: Photo 5a is a normal
image; Photo 5b is a negative image; and Photo 5c is
an edge-extracted image. I used this type of image for
object tracking. Note that the light-colored objects (red
and orange in this case) don’t show up as well in the
edge-extracted image. You can increase or decrease
the exposure setting to allow these low-contrast objects
to be seen in Edge mode.

Obstructed Views
Ian Horswill’s 1993 dissertation, “Specialization of
Perceptual Processes,” details some of his research
concerning image processing for robotics. Horswill out-
lines various assumptions that may be made by a
robotic image-processing system for detecting obsta-
cles in a given environment.

After the edges have been extracted from an image, the
height of the first edge from the bottom of the image

can be determined. Let’s assume the camera is
mounted somewhere on the front of the robot, several
inches or feet above the floor. If the camera is aimed
forward and down, and if the floor doesn’t have visible
edges (i.e., the carpet color is constant, and there are
no high-contrast seams or changes of color), then the
only edges should be the obstacles on the floor or a
floor-to-wall transition in front of the robot.

If the robot moves near a wall, and if there is enough of
a contrast between the wall and floor, an edge will be
detected at that location in the image. Using this tech-
nique, the robot can tell how far away the edge of the
obstacle is by its height in the image.

If the image is divided into thirds (i.e., left third, center
third, and right third), then the lowest edge in each third
of the image gives the robot the distance it can move
in that direction. Then, the robot can turn and move
toward the farthest direction to avoid the closer obsta-
cles. This “greatest third” approach is well suited for
corridor following, because the greatest third of the
image is most likely the direction of the corridor.

The camera takes care of extracting the edges from the
image, but the microcontroller must perform any addi-
tional processing. For instance, if you want to know an
object’s distance (or depth) from the robot, then you’ll
need an algorithm to post-process the image and
reduce the information down to a depth table. The
index to this table could represent a given x location, or
column. The entry at each index within the table could
be written with the row of the lowest edge pixel in a
given column. This algorithm is implemented in the
microcontroller as shown in Listing 1.

Now, I’ll explain the operation of the depth-finding
code. Starting at the bottom-right corner of the image,
count the number of pixels vertically until one is
reached that surpasses a predefined threshold value.
Put the row number (i.e., depth) of that pixel in a table,
step to the next column to the left, and repeat the
process.

When the depths of all of the columns of the image
have been recorded, send that information out of the
UART. A graphical representation of the depth map for

www.atmel.com page 40

the camera ball upside-down. This ensures that the first
pixels to be read from the camera are those correspon-
ding to the bottom-right corner of the image instead of
top-left. Furthermore, this makes the calculation of the
nearest object faster, because the image is read out
serially from the sensor.

The procedure for programming and using the
M64282FP is straightforward. First, load the registers in
the M64282FP using a synchronous serial protocol that
is similar to other two-wire synchronous serial inter-
faces. The microcontroller generates the XCK, SIN
(data), and LOAD signals for loading all of the registers
in the camera IC.

Next, give the Start command. After the exposure is fin-
ished, the camera IC will return a READ signal. When
the READ signal becomes active, read 15,744 pixels
(123 x 128) worth of analog data on the VOUT pin syn-
chronously with the XCK signal that the microcontroller
generates. After all of the image data has been output,
the READ signal becomes inactive, and the camera
automatically starts another exposure.

In the first part of the programming process, you can
set the camera’s registers for a normal (positive) or
inverted (negative) image, an edge-enhanced image, or
an edge-extracted image. Register settings also control
the camera’s exposure time, the output voltage offset
level, and the gain of the video signal (i.e., how much it
varies from the output voltage offset).

The maximum frequency for the camera’s XCK input is
500 kHz (T = 2 µs). With a microcontroller crystal fre-
quency of 7.3728 MHz (T = 135.6336 ns), the time for
each half-period of XCK is:

Figure 1: You can use the two servos for either panning/tilting a camera head or driving the left and right wheels
of an autonomous robot. For the latter, the servos must be modified to allow for continuous rotation. This servo
hack is common for hobby robots.

Register Address Normal mode Edge mode

0 000 0x80 0x3F
1 001 0xD6 0xD6
2 010 0x06 0x18
3 011 0x00 0x00
4 100 0x01 0x01
5 101 0x00 0x00
6 110 0x01 0x01
7 111 0x07 0xF3

Table 1: When you’re switching from Normal to Edge
mode, it’s important to remember the M64282FP reg-
isters 0, 2, and 7.

1µs
135.6336ns

www.atmel.com page 41

the test objects in Photo 4 is shown in the
Depth/Nearest/Track frame in Photo 5c. The groups of
shaded columns are areas that include objects.

Point and Shoot
The opposite of obstacle avoidance is object tracking.
The camera can be panned and tilted in response to an

object found in the image. Assuming the lowest edge in
the image above some brightness threshold is an
object to be tracked, the microcontroller can command
servo motors to pan and tilt the camera to move the
object to the center of the image. This requires some
intelligent control of the motors to prevent a slow
response, overshooting, and ringing.

To perform object tracking, the
microcontroller searches the
image in RAM from the bottom up.
When it finds the first edge
brighter than a given threshold
value, it marks the x and y loca-
tions and measures the horizontal
and vertical distance of this edge
from the center of the image.
Then, the microcontroller issues a
corrective movement command to
the servos, which respond by
redirecting the camera until the
object is centered in the view.
Listing 2 shows how it’s done.

Photos 6a and b show the pan-tilt
servo mechanism. The pan servo
is directly mounted to the tilt
servo’s control surface. Note that
the sub-micro-sized servos in my
photos allow for a compact instal-
lation.

The performance of the pan-tilt
camera head is adequate for
tracking small objects, provided
that the object isn’t moving faster
than about 1 foot per second at a
distance of 4 feet from the cam-
era. This means you can roll a
ping-pong ball at a moderate
speed across the floor roughly 4
feet in front of the camera, and the
camera will lock on and track the
ball until the servos reach their
limit.

The system won’t notice a bounc-
ing ball. Using a large ball (e.g., a

basketball) causes different edges (left and right) of the
ball to be detected, and the camera oscillates between
the two nearest edges if they alternate in intensity or y
position.

One helpful piece of equipment for tuning the system is
a laser pointer. With a laser pointer, a bright point can

Figure 2: With this processor and interface circuitry and connector design, you can enhance your own robotics applications with the
Game Boy Camera.

Photo 1: The prototype circuit board is small enough
to fit inside a mobile hobby robot.

Photo 2: I’ve provided you with four views of the mobile robot. The servo that controls the tilt angle of the cam-
era is for future expansion.

www.atmel.com page 42

be moved from one location to another almost instan-
taneously. Using one, you can observe the reaction of
the servos.

The gain of the system is set too high if the servos
overshoot and “ring” (i.e., oscillate until they come to a
rest) at the new location. The gain should be set by
increasing or decreasing the divisor of the error amount
so that the correction amount causes the servos to
overshoot slightly without ringing. Look for the con-
stant, TRACKDIV, in the assembly code for more infor-
mation.

Incidentally, the entire image-capture/ process/output
sequence takes roughly 11 ms, yielding a frame rate of
about nine frames per second. The pan-tilt camera
head is only able to track objects while they are within
the servo’s travel limits. If a subject is lost because it
moved too far to the left or right, the camera will wait
for up to 30 frames for the object to reappear before it
returns to the center position to look for another object.
You can overcome this limitation by giving the camera
the ability to pan all the way around. To do this, mount
it on a mobile robot.

Follow that Subject!
You can apply the theory used for panning and tilting a
camera to controlling a mobile robot. The camera itself
is stationary with respect to the robot base. Instead of
controlling the camera directly, the microcontroller
commands the robot base to move in a certain direction
at a specified speed. This arrangement allows the
mobile robot to find high-contrast objects and approach
them.

The robot is able to search for objects by spiraling out
in an ever-widening arc until an object is within view.
When an object is detected, the robot faces the object
and speeds toward it. The robot slows down gradually
until it stops with the object located in the center of the
camera image. As long as the object doesn’t move too
fast, the robot will continue to rotate, move forward, or
move backward to keep the object in the center of the
image. Photo 2 shows the prototype of the mobile
robot.

Instead of using the external ADC, the microcontroller
uses the on-chip analog comparator to detect bright pix-

els. In addition, the RAM isn’t used, because the only
information the robotrequires is the nearest object loca-
tion. To determine the location of the nearest object, the
pixels om the camera are read and processed on the fly.

Because the information isn’t sent from the UART, it’s
pointless to have the RS-232 converter on the board.
Therefore, you can construct a reduced circuit for the
mobile robot. The only components that you need for
the mobile robot’s microcontroller board are the micro-
controller itself, the crystal, a potentiometer (which is
used for adjusting the analog comparator reference
voltage), and a few capacitors.

Regarding the performance of the mobile robot, the
camera does an excellent job sensing high-contrast
objects within its view; however, it is inadequate for
detecting the majority of medium- and low-contrast
obstacles. In the real world, you should always use mul-
tiple layers of sensors. It is a good idea to try supple-
menting the camera with a bumper panel or whiskers.

Developing
The software for this project consists of two parts. The
first section consists of the assembly code in the AVR
microcontroller that talks to the camera, RAM, and seri-
al interface. The second part includes the C program for
a Linux-based PC that reads and writes camera regis-
ters. In addition, this portion captures images and
obtains depth information, nearest object information,
or object-tracking locations.

I assembled the microcontroller code with the tavrasm
AVR assembler and programmed the microcontroller
with sp12. I wrote the C program for the host PC using
the Simple DirectMedia Layer (SDL) library, which is a
public cross-platform graphics and multimedia-pro-
gramming library.

SDL includes routines for drawing pixels on the X-win-
dows display. A user-contributed extension, Bfont, sup-
plies the routines for writing text to the window. Refer

Photo 3: There’s only one chip and two capacitors on
the circuit board in the camera ball. Take a look at
the clear-packaged M64282FP IC.

Photo 4: The perfect testing area may be closer than
you think. I placed the test objects on my kitchen
floor, which has a practically constant texture and
surface.

Photo 6a: Four AA NiCd or NiMH batteries power the circuit board used for the pan-tilt head. b—These servos have a quick transit time. It takes only 0.09 s to rotate the
control surface through 60°! This fast response time keeps the servos from being the limiting factor in the system’s reaction time.

www.atmel.com page 43

to Photo 5 for screen shots of the user interface.
Although I completed all of the development for this
project in Linux, it should be fairly easy to port to a
Windows environment.

There are two versions of the AVR assembly code. The
pan-tilt program controls the pan-tilt camera head, and
the chase program controls the mobile robot. The pan-
tilt code has the added overhead of communicating
with the PC through the UART. In addition, it requires
the use of the pan-tilt C program on the PC. This adds
significant delays to the operation of the pan-tilt cam-
era.

If you want to get the maximum performance out of the
pan-tilt camera, you can hard-code the register set-
tings and remove the calls to the UART communication
routines. The chase code is already optimized for the
fastest possible frame rate. Either of the AVR programs
can be modified to allow for higher-level behavior by
adding calls to new routines in the main loops.

Enlargements
One way to enhance the output of the tracking system
would be to mount a low-power laser pointer on the
pan-tilt head. Then, as long as the field of view is kept
away from humans and highly reflective surfaces (in
addition to other appropriate safety precautions), the
robot could alternate between strobing the laser point-
er and tracking an object. This would let you see a pul-
sating red dot, signaling where the robot is actually
focusing its attention.

You could also use the laser and a cylindrical lens to
generate a flat, fanned-out beam (visible as a horizon-
tal line on any objects in its path). This line would be
visible only at points in the field of view where an object
is obstructing the beam (T. Ward, “Scope Out the Laser
Range Finder,” Circuit Cellar 46). Therefore, the camera
would have a much greater ability to detect low-con-
trast objects against the floor background. Additionally,
this approach would also help in finding low-contrast
walls.

If a high-speed parallel connection to a PC were used
instead of the serial one, then the PC could attempt to
perform pattern recognition in real time, comparing the
edge-extracted image to an edge database of known
objects.

A similar improvement would be to use two cameras in
tandem without pan servos. A microcontroller could
send both edge-extracted images via a high-speed
parallel connection to a PC, allowing the PC to compare
the two images and attempt to find matching patterns
of edges. Assuming that the pan angles of the two
cameras were fixed, the matching pattern locations
would then allow the PC to determine the distance to
certain objects based on the distance between the two
cameras and the difference in pan angles.

Photo 5a

Photo 5b

Photo 5c

