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Abstract-In this brief, a probabilistic estimation bias (PEB) circuit for a fixed width two’s complement Booth multiplier is 
proposed. The proposed PEB circuit is derived from theoretical computation, Instead of exhaustive simulations and 
heuristic compensation strategies that tend to introduce curve-fitting errors and exponential-grown simulation time. 
Consequently, the proposed PEB circuit provides a smaller area and a lower truncation error compared with existing 
works. Implemented in an  2-D discrete wavelet transform core (DWT), the DWT core using the proposed PEB Booth 
multiplier improves the peak signal to noise ratio by 17 dB  with only a 2 % area penalty compared with the direct-
truncated method. 

Index Terms—Discrete wavelet transform (DWT) , estimation theory, fixed-width Booth multiplier, probabilistic analysis 

I  INTRODUCTION 
Fixed-Width multipliers generate an output with the same width as the input. They are widely used in digital signal 
processing systems, such as discrete cosine transform (DCT), finite-impulse-response filter, and fast Fourier 
transform. Nevertheless, the computation error is introduced if the least significant (LS) half part is directly 
truncated. To reduce the computation error, many compensation techniques were presented for array multipliers [1]–
[8]. There is an apparently tradeoff between accuracy and hardware complexity. Recently, compensation works have 
been increasing focused on reducing the truncation error on the Booth multiplier [9]–[15]. In [9], Jou et al. have 
presented statistical and linear regression analysis to reduce the hardware complexity. However, the truncation error 
was partly depressed because the estimating information that came from the truncated part is limited. Song et al. 
[14] determined the estimation threshold by using a statistical analysis. Huang et al. [13] have presented a self 
compensation approach using a conditional mean derived from exhaustive simulation. Nevertheless, these time-
consuming exhaustive Simulations and heuristic compensation strategies may introduce curve fitting errors. 
Heuristic compensation bias circuits can reduce the error further by using more inputs from the encoder [10], [15]; 
however, these circuits consume more hardware overhead 

TABLE I 
MODIFIED BOOTH ENCODER AND PROBABILITIES 

OF THE ENCODED WORD 

 
 

This study proposes a probabilistic estimation bias (PEB) method for reducing the truncation error in a fixed-width 
Booth multiplier. The PEB formula is derived from the probabilistic catalysis in the partial product array after the 
Booth encoder. In addition, the low-error and area-efficient PEB circuit is obtained based on the simple and 
systematic procedure. In this way, the time-consuming exhaustive simulation and the heuristic design process of the 

International Journal of Innovations in Engineering and Technology (IJIET)

Vol. 2 Issue 1 February 2013 38 ISSN: 2319 – 1058



compensation circuit can be avoided. Furthermore, the hardware efficiency and low error are validated through our 
simulation results. 

II FIXED-WIDTH BOOTH MULTIPLIER 
 

Modified Booth encoding is popular to reduce the number of partial products [16]. Two L-bit inputs X and Y , and a 
2L-bit standard product SP (without truncation error) can be expressed in two’s complement representation as 
follows: 
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The modified Booth encoder maps three concatenated inputs y2i+1, y2i, and y2i�1 into y_i, which are tabulated in Table I, 
where P{y_i} stands for the probability of y_i. After encoding, there are Q = L/2 rows in the partial product array with 
an even width L. The corresponding partial products represented in input xi are tabulated in Table II, where the last 
column ni stands for the sign of each partial product. According to (1), an example of 10 × 10 fixed-width Booth 
multiplier with the Booth encoder is displayed in Fig. 1. 

 
 

The partial product array can be divided into two parts: the main part (MP),which includes ten most significant 
columns (MSCs), and the truncation part (TP), which includes ten LS columns (LSCs). The SP can be rewritten as 
follows: 

 
SP = MP +TP                                   (2) 

 
In the fixed-width multiplication, TP can be estimated and the quantized product QP can be defined as 

 
L2.MPQP ���                                 (3) 

 
where � representing the estimation bias (EB) from TP can be further decomposed into TPMajor (MSC of TP) and 
TPminor  ( LSCs of TP) parts as 
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MinorTP = 21 mM TPTP ��                                                    (6)

Where Round(k) is rounding k to the nearest integer. In Fig. 1 ,because TPMajor  affects more than TPminor  while 
contributing toward the EB �, the � value can be obtained by calculating TPMajor and estimating TPminor in order to 

International Journal of Innovations in Engineering and Technology (IJIET)

Vol. 2 Issue 1 February 2013 39 ISSN: 2319 – 1058



reduce truncation errors. In our analysis of estimation, expected values on all elements including ni in TPminor  are 
derived. First, we derive the expected values (probabilities of being one) on all elements in TPminor, except for P0,0 
and n0. Taking column P0,i (i�0) in Table II as an example, we sum up the expected values on nonzero terms in the 
third, fourth, and sixth rows. When the third row (y_i = 1) is taken into consideration, the expected value of x0 is 1/2 
because the probability of each input bit is assumed to be uniformly distributed. Then, we can trace back to Table I 
and find that probability P{y_i = 1}is 2/8. It is straightforward to compute the expected value of  P0,i(i�0) to be 
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Similarly, the expected value E[ni] is equal to 3/8. Second, when we calculate the expected values of E[P0,0] and 

E[n0] in the LSC of TPminor, only four conditions marked as gray rows in Table I occur. The expected value E[P0,0] 
can be derived as follows: 
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Similarly, the expected value E[n0] is 1/2 as well. Hence, the expected values of all elements (including ni) in 
TPminor are obtained as follows: 

 
Case 1: Elements in the LSC 
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Case 2: Other elements 
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III . PROPOSED PEB 
Based on (9) and (10), the PEB formula is derived. Then, the proposed PEB circuit is implemented by systematic 
steps that provide a simple and extendable solution for long fixed-width (L � 16) Booth multipliers  

 
3.1 Proposed PEB Formula 
To easily understand the deduction process, we divide TPminor into two groups, i.e., TPm1 and TPm2, as displayed in 
Fig. 1(b). Group TPm1 includes the columns containing ni and can be derived as follows: 
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where Q = L/2. Substituting (7) and (8) into (11), the expected value of TPm1 can be simplified as 
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Similarly, the remaining group TPm2 and its expected value can be derived as follows: 

 
 

TABLE III 
IMPLEMENTATION INDICES A AND B ACCORDING TO (15) 

 
 

Combining (12) and (13), the expected value of TPminor can be calculated as follows: 
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where the last term 2�2((L/2)+1) can be neglected because its value is smaller than the former term 3L/32, particularly 
for large L. As a result, the expected value of TPminor can be estimated as follows: 
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where A and b are the integer and fractional parts of 3L/32, respectively. Bit B is set to 1 if b � 0.5, otherwise B = 0. 
Table III tabulates the values of A and B by (15) in various widths. 

Substituting (15) into (4), we obtain the PEB formula as follows: 
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3.2 Proposed PEB Circuit Using the Systematic Procedure 
The realization of (16) can be easily implemented by using full adders (FAs) and half-adders (HAs). The PEB circuit 
is obtained after the following systematic steps: 

 
1) Find integer A and bit B by calculating PEB in (15). 
2) Generate A estimation carries (ec0 � ecA�1), and add 
    them to the LSC of MP. 
3) Sum up bit B and elements in set {TPMajor} ={PL�1,0, PL�3,1, . . . , P1,Q�1} with the FA or HA tree to produce 

the remaining estimation carries (ecis) being added to the LSC of MP and a sum (for rounding). The detailed 
procedure are listed as follows: 

     a) Add bit B and set {TPMajor} in the carry-save form [16] with sums to be repeatedly added for producing  
ecis until only one sum is left. 

     b) Set the final sum as the last eci. 
Taking width L = 10 as an example, the proposed PEB circuit (gray block as shown in Fig. 2) can be obtained after 
conducting the proposed systematic steps. First, A = 0 and B = 1 are obtained from Table III. Second, no carry is 
generated because A = 0. Third, sum up B (= 1) and all elements of set {TPMajor} = {P9,0, P7,1, P5,2, P3,3, P1,4} 
with two FAs and one HA. The 10-bit Booth multiplier with the proposed PEB circuit is shown in Fig. 2. The 
systematic steps can be applied to the long fixed-width multiplication. For example, Fig. 3 displays the PEB circuit 
for the 32-bit fixed-width multiplication (A = 3 and B = 0). 

IV. PERFORMANCE COMPARISONS 
4.1 Fixed-Width Booth Multiplier 
In Table IV, Cadence System-on-Chip (SoC) Encounter is applied with Taiwan Semiconductor Manufacturing 
Company (TSMC) 0.18-�m standard cell library to implement all the listed circuits, and the area (in square 
micrometers) and power consumption (in milliwatts) comparisons are normalized to those of the posttruncated 
Booth multipliers as shown in parentheses, respectively. The accuracy can be evaluated in terms of the absolute 
average error |¯�|, the maximum error �M, the mean square error �ms, the average error ¯�, and the variance of 
absolute error �v defined as 

 
 

Fig 1. Example of 10 x10 Booth multiplier (a)Booth encoder (b) Partial product array: MP and TP. 
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where Avg{ }, |N|, Max{ }, and Var{ } represent the average operation, the absolute value N, the maximum 

operation, and the variance operation, respectively. Table IV shows the error comparisons of existing fixed-width 
Booth multipliers in various lengths L, where numbers in various lengths multipliers in various lengths L, where 
numbers in parentheses stand for the truncation errors of direct-truncated (DT) multipliers, which is defined in (17). 
Compared with that of [9] and [14], our proposed PEB circuit provides the smallest truncation errors except the 
average error with the same or 1% more hardware overhead.  

 
 

Fig 2. Fixed-width 10 bit multiplier with the proposed PEB circuit 
 

 
 

Fig 3. Proposed PEB circuits for L=32 (A=3;B=0) 
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TABLE  V 

 

 
 

It is also interesting to observe that the designs of [10] and  exists between hardware overhead and accuracy in these 
compensation circuits. The larger hardware overheads of [10] and [15] come from the bias generation circuits and 
encoders. Because our compensation bias is derived from a theoretical deduction, our PEB circuit could be easily 
extended for high-accuracy fixed-width multiplication using more information from TPminor with the penalty of more 
area. Different from previous compensation circuits for Booth multipliers, our PEB circuit does not need the 
exhaustive simulation and the heuristic bias circuit design. 

 
4.2 Application Example : DWT 
In order to exhibit the accuracy in real applications, the proposed low-error PEB is applied into a discrete wavelet 
transform. The size of the test image “Lena” is 512 × 512 pixels, with each pixel being represented by 8-bit 256-
gray-level data. Moreover, the [15] outperform [9], [14], and our proposed PEB circuit in error merits using more 
hardware. In general, a tradeoff accuracy performance of the discrete wavelet transform is evaluated by the peak 
signal-to-noise ratio (PSNR). The comparison results for the accuracy of the PSNR and the synthesized area are 
tabulated in Table VI. Compared with the DWT core using standard Booth multipliers, the wavelet transform using 
the proposed PEB circuit reduces 23% area with the PSNR penalty of 4 dB. On the other hand, the accuracy the 
PSNR of the wavelet transform core using the proposed PEB circuit is more than 17 dB, which is larger than the DT 
approach with only 2%more hardware overhead. 

V. CONCLUSION 
In this brief, we have first derived the PEB formula and have applied the probabilistic analysis for the truncated 
two’s complement fixed-width Booth multiplier. Then, a simple and systematic procedure has been presented to 
design the compensation circuit based on the PEB formula and the probabilistic analysis. Compared with the 
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existing works, the proposed method has provided smaller area and smaller truncation errors. The realization of our 
PEB circuit does not need exhaustive simulations and heuristic compensation strategies that tend to introduce curve 
fitting errors and unacceptable exponential simulation time. Furthermore, the proposed PEB Booth multiplier in the 
Wavelet transform application has shown the improvement of the PSNR by 17 dB with only 2% area penalty 
compared with the DT method. In the future work, our PEB circuit can be applied for high-accuracy fixed-width 
multiplication using more inputs from TPminor with more hardware overhead. 
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