THE PROGRAMMING MODEL OF 8086

- 8086 through Core2 considered **program visible**.
 - registers are used during programming and are specified by the instructions
- Other registers considered to be **program invisible**.
 - not addressable directly during applications programming
- 80286 and above contain program-invisible registers to control and operate protected memory.
 - and other features of the microprocessor
- 80386 through Core2 microprocessors contain full 32-bit internal architectures.
- 8086 through the 80286 are fully upward-compatible to the 80386 through Core2.
- Figure 2–1 illustrates the programming model 8086 through Core2 microprocessor, including the 64-bit extensions
Multipurpose Registers

- **RAX** - a 64-bit register (RAX), a 32-bit register (accumulator) (EAX), a 16-bit register (AX), or as either of two 8-bit registers (AH and AL).
 - The accumulator is used for instructions such as multiplication, division, and some of the adjustment instructions.
 - Intel plans to expand the address bus to 52 bits to address 4P (peta) bytes of memory.
 - **RBX**, addressable as RBX, EBX, BX, BH, BL.
 - BX register (base index) sometimes holds offset address of a location in the memory system in all versions of the microprocessor
 - **RCX**, as RCX, ECX, CX, CH, or CL.
 - a (count) general-purpose register that also holds the count for various instructions
 - **RDX**, as RDX, EDX, DX, DH, or DL.
 - a (data) general-purpose register
 - holds a part of the result from a multiplication or part of dividend before a division
 - **RBP**, as RBP, EBP, or BP.
 - points to a memory (base pointer) location for memory data transfers
 - **RDI** addressable as RDI, EDI, or DI.
 - often addresses (destination index) string destination data for the string instructions
 - **RSI** used as RSI, ESI, or SI.
 - the (source index) register addresses source string data for the string instructions
 - like RDI, RSI also functions as a general-purpose register
 - **R8 - R15** found in the Pentium 4 and Core2 if 64-bit extensions are enabled.
 - data are addressed as 64-, 32-, 16-, or 8-bit sizes and are of general purpose
• Most applications will not use these registers until 64-bit processors are common.
 – the 8-bit portion is the rightmost 8-bit only
 – bits 8 to 15 are not directly addressable as a byte

Special-Purpose Registers
• Include RIP, RSP, and RFLAGS
 – segment registers include CS, DS, ES, SS, FS, and GS
• RIP addresses the next instruction in a section of memory.
 – defined as (instruction pointer) a code segment
• RSP addresses an area of memory called the stack.
 – the (stack pointer) stores data through this pointer
• RFLAGS indicate the condition of the microprocessor and control its operation.
• Figure 2–2 shows the flag registers of all versions of the microprocessor.
• Flags are upward-compatible from the 8086/8088 through Core2.
• The rightmost five and the overflow flag are changed by most arithmetic and logic operations.
 – although data transfers do not affect them

![Register Diagram](image)

Figure 1.12 The EFLAG and FLAG register counts for the entire 8086 and Pentium microprocessor family.

• Flags never change for any data transfer or program control operation.
• Some of the flags are also used to control features found in the microprocessor.
• Flag bits, with a brief description of function.
• C (carry) holds the carry after addition or borrow after subtraction.
also indicates error conditions
• P (parity) is the count of ones in a number expressed as even or odd. Logic 0 for odd parity; logic 1 for even parity.
• if a number contains three binary one bits, it has odd parity
• if a number contains no one bits, it has even parity
• C (carry) holds the carry after addition or borrow after subtraction.
• also indicates error conditions
• P (parity) is the count of ones in a number expressed as even or odd. Logic 0 for odd parity; logic 1 for even parity.

 if a number contains three binary one bits, it has odd parity; If a number contains no one bits, it
 has even parity
• A (auxiliary carry) holds the carry (half-carry) after addition or the borrow after subtraction
 between bit positions 3 and 4 of the result.
• Z (zero) shows that the result of an arithmetic or logic operation is zero.
• S (sign) flag holds the arithmetic sign of the result after an arithmetic or logic instruction
 executes.
• T (trap) The trap flag enables trapping through an on-chip debugging feature.
• I (interrupt) controls operation of the INTR (interrupt request) input pin.
• D (direction) selects increment or decrement mode for the DI and/or SI registers.
• O (overflow) occurs when signed numbers are added or subtracted.
 an overflow indicates the result has exceeded
 the capacity of the machine
• IOPL used in protected mode operation
 to select the privilege level for I/O devices.
• NT (nested task) flag indicates the current task is nested within another task in protected
 mode operation.
• RF (resume) used with debugging to control resumption of execution after the next
 instruction.
• VM (virtual mode) flag bit selects virtual mode operation in a protected mode system.
• AC, (alignment check) flag bit activates if a word or doubleword is addressed on a non-word or non-doubleword boundary.
• VIF is a copy of the interrupt flag bit available to the Pentium 4–(virtual interrupt)
• VIP (virtual) provides information about a virtual mode interrupt for (interrupt pending) Pentium.
 used in multitasking environments to provide virtual interrupt flags
• ID (identification) flag indicates that the Pentium microprocessors support the CPUID instruction.
• CPUID instruction provides the system with information about the Pentium microprocessor

Segment Registers
• Generate memory addresses when combined with other registers in the microprocessor.
• Four or six segment registers in various versions of the microprocessor.
• A segment register functions differently in real mode than in protected mode.
• Following is a list of each segment register, along with its function in the system.
• CS (code) segment holds code (programs and procedures) used by the microprocessor.
• DS (data) contains most data used by a program.
• Data are accessed by an offset address or contents of other registers that hold the offset address
• ES (extra) an additional data segment used by some instructions to hold destination data.
• SS (stack) defines the area of memory used for the stack.
• stack entry point is determined by the stack segment and stack pointer registers
• the BP register also addresses data within the stack segment
• FS and GS segments are supplemental segment registers available in 80386–Core2 microprocessors.
• allow two additional memory segments for access by programs
• Windows uses these segments for internal operations, but no definition of their usage is available.

Source: http://elearningatria.files.wordpress.com/2013/10/cse-iv-microprocessors-10cs45-notes.pdf