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ABSTRACT 

Accurate recognition of sound patterns in spectrograms is important step for further recognition 

applications. However, background noise forms fundamental problem regardless the species under study. 

In this paper, crest factor feature was extracted from the limited dynamic range spectrogram. The 

developed crest factor image behaved as smoothed version of the spectrogram, at which edges of the 

involved sound patterns were detected without the need of prior smoothing filters and their scaling 

constraints. Attached noise – surrounds the detected edges – was removed, to form the enhanced 

spectrogram. The method was compared to other enhancement approaches such like spectral Subtraction 

and wavelet packet decomposition. Comparison was performed on different structure patterns of bats and 

birds. Results indicate how the method is promising for efficiently enhancing the spectrogram while 

preserving its temporal and spectral accuracy. The method correctly classified three bioacoustics species 

with an accuracy of 94.59%, using few 2D features of their enhanced spectrograms 

. 
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1. Introduction 

1.1. Problem formulation 

Bioacoustics calls have been efficiently employed for a long time for species detection, 

classification, and recognition. These calls handle the sound patterns which are almost unique and 

oriented for the investigated bio-source. Several temporal and spectral sound features are 

extracted from these patterns in time and frequency domains; respectively. These features are 

used to train and develop a learning system, using methods such as Artificial Neural Network, 

which afterwards is able to successfully recognize the test bioacoustics calls to their 

corresponding groups or species, according to their features values. The approach have been 

widely used in many life science problems, such as the bioacoustics detection of hidden grain 

weevils for early treatment [1], and detection of bat ultrasound echolocation calls in the windmills 

region to avoid their expected collision with the blades[2].    

 

In general, collection of time domain and frequency domain features are used to develop more 

accurate detection system, revealing the importance of having a reliable spectrogram (time-

frequency intensity 2D image) of the specified sound.Spectrogram is an important representation 

of sound data looks like the human hearing which is based on a kind of real-time spectrogram 
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encoded by the cochlea of the inner ear [3], to classify and recognize patterns of sound samples. 

However, spectrogram is usually attached by different forms of noise; including those formed 

during sound recording[4],and those produced during the transformation to frequency domain 

result in spectral leakage, and up to 10% error(s) infrequency and/or power spectrum 

computations [5]. These noises directly degrade the quality of the waveform, deteriorate the 

worth of the extracted features and thus lead to inaccuracy in recognition of the sound patterns 

[6].Further difficulty is added to the problem due to variability of patterns structure, which can 

vary greatly including vertical straight, sloped straight, sinusoidal type and relatively random 

patterns. However, filtering noisy signals through the spectrogram is considered more effective 

than separate filtrations in time and/or frequency domain, since sound patterns do not cover the 

whole spectrogram image, and therefore easier to filter off the noise. 

A spectrogram enhancement approach which is independent on the noise type, level, and structure 

is required. Once established, the pattern recognition algorithms can operate efficiently and 

smoothly on the clear “only patterns” spectrogram. Therefore, the problem of spectrogram 

enhancement and accurate detection of the sound patterns has attracted researchers’ interest from 

a variety of backgrounds ranging among signal and image processing, and statistical models [7,8]. 

1.2. Related work 

Common and recent techniques for spectrogram enhancement include basic band pass 

filtering[9], spectral subtraction[10], Wiener filter[11], and wavelet packet decomposition[12, 

13].Simple methods, such as the band pass filtering, originally employed the use of time-domain 

filtering of the corrupted signal, however, this is only successful when removing low or high 

frequency noise and does not provide satisfactory results for many species which have frequency 

range overlaps with their attached noises [14]. 

Although the base spectral subtraction method is very simple and efficient, it assumes the noise to 

be additive and uncorrelated with the signal [15]. Moreover, the enhancement by spectral 

subtraction tends to produce sounds with musical artifacts that are often more objectionable than 

the original noise [16]. Later, the multi-band spectral subtraction method was proposed, at which 

the corrupted sound is initially divided into several frequency bands, and then the spectral 

subtraction method is applied to each band[17]. This method outperforms the standard power 

spectral subtraction method resulting in superior spectrogram quality and largely reduced musical 

noise. Meanwhile, the Wiener filter technique basically considers the beginning of a signal is 

noise, and its adaptive type removes noise based on a training data [18]. However, during the 

operation on data with unknown noise, the noise level can be underestimated and the 

enhancement can be slightly milder [19]. The methods based on wavelet packet decomposition 

are effective in removing background noise in the spectrogram. But they cannot suppress much of 

the noise generated during the Fourier transformation, because the former noise is usually random 

Gaussian distribution while the latter may be modeled by Rayleigh distribution [7,20]. 

 

Image analysis techniques applied to this area treat the spectrogram as an image, provides a wide 

range of methods which could be beneficial to this problem. One of these developed methods is 

the noise suppression using spectrogram morphological filtering [21,22], applying two 

subsequent operations of erosion and dilation. The erosion was responsible to remove noise from 

the noisy spectrogram while dilation used to restore any erroneously removed sound patterns. 

However, it improves the enhancement accuracy by only 10% when combined by nonlinear 

spectral subtraction with a suitable selection of the threshold. The author in [23] proposed an edge 

detection method which initially smoothes the spectrogram using a Gaussian filter, followed by 

thresholding each point by comparison to the background measurement. This allows for time 

invariant noise conditions and computing independently for each frequency bin, which 

successfully detected (90%) of whale calls. If the smoothing kernel is quite large, the detrimental 

effect is reduction in the detection accuracy, especially at low SNR. Meanwhile, the authors in 

[24] passed the spectrogram through 2D bilateral filter to reduce noise and preserve its patterns 
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edges. The filtered spectrogram is sent to two parallel processing paths, at which the first path 

extracts significant patterns from background noise. The second path performs the edge detection 

and restructures the rough patterns that can be used as a mask. The processed image from the first 

path passes through a mask generated from the second path. However, pattern recognition still 

severely depends on image processing skills and spectrogram resolutions which lead to 

concealment of very short patterns. Apartial differential equation technique was used in [25] for 

edge enhancement and noise reduction based on a regularization of the mean curvature motion 

equation. However, the comparisons indicate that the method gives almost similar results as the 

wavelet based methods.  

In this paper, an improved spectrogram enhancement method has been developed based on the 

last advances in the edge detection techniques. The dynamic power range of the spectrogram is 

limited to avoid the problem of low level portions of the spectrogram expanding and thereby 

obscuring the detail of the energetic portions. Afterwards, the crest factor image is calculated as a 

smoothed version of the original spectrogram image, hence escaping the application of smoothing 

Gaussian filters and their drawbacks [26].Based on the edge detection algorithm presented in 

[28], the sound patterns in the crest factor image are detected. Afterwards, the original power 

values of the patterns edges and their interior are reconstructed, while the power values of the 

patterns surrounding are eliminated, as they represent the attached noises whether attached to the 

sound or generated during the frequency domain transformation. The proposed method was 

applied to several bioacoustics calls of different SNR values, and compared to the results given 

by band pass, multi-band spectral subtraction, Wienerfilter, and wavelet packet decomposition 

methods, with respect to subjective and objective measures. Finally, possible implementations of 

the proposed method in obtaining the enhanced frequency and power contours, reconstruction of 

the enhanced waveform, and simplified pattern recognition operation are presented. 

2. Material and method 

2.1.Signal processing 

Audio sound streams are sampled in time domain with suitable sampling frequencies, selected to 

be higher than the double of maximum frequency in the sound stream, satisfying the Nyquist 

sampling theorem [5] and avoid antialiasing in the signal reconstruction. Figure (1) shows an 

example for the call of Sitta canadensis bird which was sampled at 11025 Hz. The signal is 

divided into segments with length of 1% of the total signal length and 90% overlapping 

percentage. Each segment is then multiplied by Bartlett window function and transformed to 

frequency domain through Fast Fourier Transform (FFT).  The frequency domain representation 

of the signal (i.e., spectrogram) is the power spectrum distribution with frequency, at each time 

instant, as plotted in figure (2).The implementation of the Bartlett window function is to have 

better frequency resolution while keeping acceptable spectral leakage and amplitude accuracy 

[27].  

The resultant spectrogram contains important sound patterns of the signal immersed in attached 

noise. These noises are not only due to the base noise attached to the sound, but also generated 

during FFT, therefore, cleaning the signal in time domain, will not ensure clean spectrogram. 
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Figure 1. A sound stream for Sitta canadensis bird in time domain revealing its contents of 

two long pulses and one long inter-interval. 

 

Figure 2. The spectrogram for the time domain signal of figure (1), after being divided into 

segments of length equal to 1% of the total signal length, multiplied by Bartlett window 

function and transformed to frequency domain using FFT. 

2.2.Limiting the dynamic range 

The attached noise to the spectrogram may be assumed to have almost same power value, which 

can be removed from the whole spectrogram. However, this will eliminate as well the non-noisy 

patterns which have this power value.Therefore, this thresholding scheme should be carefully 

applied through the physical fact of the limited dynamic range. Althoughthe whisper cannot be 

heard in loud surroundings, the spectrogram will contain all details about whisper and loud sound 

powers. Thus, the spectrogram powers have to be limited, to avoid much of the attached whisper 

(i.e., noise).The range is limited to 40 dB below the maximum value for all tested sounds, because 

most bioacoustics signals are expanded/slowed to the human speech range, which is normally 

perceived over this range [29]. Therefore, any point with power value outside this range, 

including those of noise as well as very weak patterns, are eliminated from the spectrogram, as 

shown in figure (3). 
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Figure 3. The limited spectrogram after the power values were limited to a dynamic range of 

40 dB, clarifying how most of the noise and very weak sound patterns were eliminated. 

2.3.Detection of the pattern edges 

The algorithm starts by sliding a 5*5 matrix (mask) over the limited dynamic range spectrogram 

image in x direction and then in y direction, with step of one pixel. The represented pixel of the 

mask is its centroid which is calculated by equation (1). The intensities of the pixels (i.e., power 

values) enclosed by the mask are used to calculate the crest factor feature, given in equation (2), 

which is a ratio of the maximum value to the root mean square value, indicating how much 

impacting is occurring inside the mask, as schematically explained in figure (4). ���� ���	
�� = ∑ � ∗ ������ \ ∑ ������     (1) � = ���������               (2) 

Where fi is the gray level intensity value of pixel i, and the back slash means that only the 

quotient of the division is considered. ����� and  ���� are the peak and root mean square of the 

pixels intensities; respectively, and C is the crest factor of the mask. 

 

Figure 4. The crest factor for some basic curves, showing how much impacting occurs. 

As a result, the crest factor image is obtained, by gathering the local crest factors calculated 

during the sliding of the mask. Although this edge detection algorithm follows the one presented 

in [28], it is applied to the crest factor image instead of combination of energy and skewness 

images, because this combination presents both strong edges (output of the energy feature) and 

weak edges (output of the skewness feature). Hence, the noises are also detected as patterns, 

displayed in figure (5a)with a signal to noise ratio (SNR) - given in equation (3) - of1.95. 

Alternatively, the crest factor feature of an image presents the edges that have impact to their 
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surrounding (i.e., non-weak edges), as displayed in figure (5b) with SNR of2.82. Furthermore, the 

limited dynamic range makes the crest factor more meaningful since it is a measure of relative 

spatial intensity change. 

"#$ = 10'�(�) ∑ *+,���∑-*+,��� − */01�01-                                        (3) 

Where Pclean and Poutput are the clean and output power values; respectively.  

 
(a) 

 
(b) 

Figure5. Two features from the limited dynamic range spectrogram of figure (3), (a) combination 

of energy and skewness images, following the algorithm presented in [28], and (b) the crest 

factor image. 

Afterwards, the Sobel operators given in equation (4) are employed on the crest factor image, 

through equation (5),to get its gradient images (CxandCy). And with the aid of equations (6) and 

(7), the edges strength (E) and the edges directions (3) are calculated; respectively. 

∆5= 6−1 0 1−2 0 2−1 0 17 , ∆9= 6 1 2 10 0 0−1 −2 −17        (4) �5 = ∆5 ∗ �, �9 = ∆9 ∗ �         (5) < = =�5> + �9>(6) 

3 = 	��A� B�9�5C + D2     (7) 

Where∆5and∆9are the derivative operators in x and y directions; respectively. �5 and �9 are the 

intensities of the gradient images in x and y direction; respectively. E is the edge strength and 3 is 

the edge direction with the x-axis.  

 

Finally, the edges image is formed by the values of edges strength (E), and executed by the non-

maximum suppression algorithm and flux equilibrium check [28], to suppress thick edges to one 

pixel width and fill the missing pixels in the edge direction. Consequently, the final edges image, 

given in figure (6) is produced, which separates the patterns from surrounding noise. However, 

the edges do not provide information about where exactly are the inner of the patterns and where 

are their surroundings.  
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Figure 6. The edges image of the limited dynamic range spectrogram using 5*5 mask and a 

flux check matrix of size 3*3 

2.4. Reconstructing the spectrogram 

A classification condition is applied to each row and afterwards each column of the edges image. 

This condition compares the average power spectrum of all pixels among two subsequent edges 

in one row (column), with respect to the average power spectrum of these two edges, as clarified 

in the algorithm given in figure (7). 

 

Figure 7. Schematic diagram and algorithm for the classification condition which classifies sound 

patterns from their surrounding noise. 

Thus, the patterns are defined and their power values are restored, and the surrounding noises are 

also defined and their power values are eliminated, results in the enhanced spectrogram shown in 

figure (8). 

 

Figure 8. The enhanced spectrogram by the proposed method revealing sound patterns and 

eliminating their surrounding noise. 
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3. Experimental results and discussion 
 

The results obtained by the proposed method [PM] were investigated and compared to those 

obtained by conventional and modern spectrogram enhancement methods. The designing 

parameters of these methods were carefully selected to give best enhanced spectrogram for the 

first application (Rhinolophus blasii bat), and were fixed over the following applications to have 

leading results and trustful comparisons. The first method is the widely used band pass filter [BP] 

with a band width enclosing the sound patterns, and measured at half-power points (i.e., gain -3 

dB relative to peak). The second method is multi-band spectral subtraction [MBSS]using 4 

linearly-spaced frequency bands, over subtraction factor of 4 and power factor of 1.5 [7]. The 

third method employs the Wiener filter [WF]with a spectral distance threshold of 3 and the initial 

0.03 seconds considered as noise[11]. The fourth method is wavelet packet decomposition [WPD] 

with soft thresholding and 5 level decompositions using symlet 8 wavelet [14, 16]. The number of 

tested sound samples are 42 (each with 23-25 sec for Rhinolophus blasii bat), 37 (each with 23-25 

sec for Barbastella barbastellus bat), 48 (each with 0.55-0.9 sec for Vanellus vanellus bird), and 

45 (each with 0.55-0.9 sec for Parus major bird), with a frame length of0.025 sec multiplied by 

Bartlett window function, and 90% overlapping percentage.  

The analysis was applied by both subjective and objective measures of enhancement accuracy. 

The subjective measure is borrowed from the field of psychology and the human judgment of 

evaluation. One of the commonly used subjective measures is the Mean Opinion Score 

(MOS),which gives a numerical estimation of the perceived quality of the media received [30]. 

After enhancing the spectrogram, its time domain signal was reconstructed and played back to 10 

listeners. These listeners (5 females, and 5 males) were asked to give a score [1 = bad, 2 = poor, 3 

= fair, 4 = good, and 5 = excellent] to estimate the enhanced spectrogram quality. Afterwards, the 

MOS was calculated by averaging the given scores, and its confidence interval (CI) was 

computed for 95% confidence level, as described in figure (9). 

 

Figure 9. Normal distribution curve with 95% confidence level. A2 = P (z > z*) = (1 - 0.95) / 2 

= 0.025, P (z <= z*) = 1 - 0.025 = 0.975, results in z* = 1.96 (from normal distribution table). 

The confidence interval is(MOS −  I1.96 ∗ σM, MOS + I1.96 ∗ σM). WhereI−N∗, N∗M encloses CI 

on the standard deviation axis (z) and O is the standard deviation of the opinion score. 

On the other hand, objective measures are borrowed from digital signal processing and 

information theory, providing equations that can be used to measure the enhancement accuracy of 

the enhanced spectrogram in comparison to the clean one. Four widely used and easy to 

implement objective measures were employed, having high correlation with diagnostic 

acceptability [11,30,31]. These measures are the overall Signal to Noise Ratio (SNR), Segmental 

Signal to Noise Ratio (SSNR), Log Spectral Distance (LSD), and Itakura Saito (IS), given by 

equations (3, 8, 9, and 10; respectively).SSNR is defined as the average of SNR values over 

segments with sound activity, LSD is the spectral distance or distortion measure, expressed in dB, 

between the enhanced and clean spectrograms, while IS a measure of the perceptual difference 

between these two spectrograms. Furthermore, the average eccentricity (AE) was calculated by 

equation (11), to simply check if the shape of sound patterns in the enhanced spectrogram was 

changed from those in the original spectrogram, results in indication of whether the enhanced 

spectrogram is augmented for further pattern recognition task. Eccentricity is the aspect ratio of 

length to width of the minimum rectangle bounding the sound pattern. 
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""#$ = 10P Q '�(�) Q R ∑ *+,���∑-*+,��� − */01�01-S
T�UTA�

��T�
VA�
��)         (8) 

X"Y =  Z 2[" Q \10'�(�) R *+,���*/01�01S]>^_/>
)                                  (9) 

a" = 2[" Q \ *+,���*/01�01 − '�(�) *+,���*/01�01 − 1]^_/>
)                           (10) 

b< = 1c Q Xded
f

d��                                                                             (11) 

Where FS is the sampling rate of the signal, Pclean and Poutput are the clean and enhanced power 

spectrum respectively. M is the number of spectrogram segments (set to 20), N is the number of 

samples on a segment. L and W are the length and width; respectively, for the minimum rectangle 

bounding the sound pattern, and K is the number of sound patterns in the spectrogram. 

The applications were selected to cover different spectrogram shapes, including those with 

narrow band, wide band, constant frequency, frequency modulated, short pulses, and long pulses 

patterns. The original bioacoustics calls in each application were corrupted by several white 

Gaussian noises, as descriptively shown in the left part of figure (10) for a saw tooth wave, result 

in several time domain SNRs (30, 20, 10, 5, and 1 dB), and in correspondence several 

spectrogram SNRs as demonstrated in the right part of figure (10), with average values of (3.66, 

2.89, 2, 1.73, 1.52 dB; respectively).For each application and for each SNR, the five enhancement 

methods (BP, MBSS, WF, WPD, and PM) were applied, and the results were subjectively and 

objectively compared. It is worthy to mention that the silent regions were being removed, because 

they can considerably influence the output objective measures. 
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Figure 10. (top) A description for how the addition of different white Gaussian noise changes 

the structure and SNR of the time domain signal. (bottom) The corresponding changes in the 

spectrogram SNR averaged for the five applications. 

3.1. Bioacoustics call of Rhinolophus blasii bat 

The echolocation call of the Rhinolophus blasii bat which was investigated in this section 

includes medium duration strong sound pulses separated by short intervals. These pulses cover 

short Frequency Modulated (FM) band around 5 KHz, roughly estimated as Constant Frequency 

(CF) band, which were slowed down by a time expansion factor of 10 to be in the audible range, 

as shown in figure (11a).BP approach was able to remove most of the added noise, by rejecting 

the spectrogram values outside the small band surrounds the frequency of 5 KHz, as graphically 

shown in figure (11b) and numerically in the second column(s) of Table 1. Instead, the MBSS 

and WF approaches were not successful to remove reasonable amount of noise, especially for 

input SNRs less than 20 dB. The spectrograms generated with MBSS approach tended to 

temporally spread out the sound pulses, while those generated by WF approach tended to 

temporally cut from the duration of the pulses, as displayed in figure (11c, 11d) and the third and 

fourth column(s) of Table 1; respectively.  

 

Figure 11. (a) One of Rhinolophus Blasii bat echolocation calls at SNR = 1 dB (with expansion 

factor of 10), and its enhanced spectrogram by (b) BP, (c) MBSS, (d) WF, (e) WPD, and (f) 

PM. 
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For higher values of input SNRs, the WF presented better enhancement. The WPD approach 

removed reasonable amount of noise and presented good estimation for the time domain 

resolution of the sound pulses. However, the five level decompositions produced repeated 

patterns along the frequency axis, as shown in figure (11e) and the fifth column(s) of Table 1. The 

PM dealt with the noisy spectrogram as an image, and was able to preserve the sound pulses 

while removing most of the attached noise, as expressed in figure (11f) and the sixth column(s) of 

Table 1. 

Table 1. The subjective and objective measures for the spectrogram of Rhinolophus Blasii call 

enhanced by BP, MBSS, WF, WPD, and PM 

(A) MOS 

input 

SNR 
noisy BP MBSS WF WPD PM 

1 1 (1,1) 2.8 (2.5,3) 1 (1,1) 1.1 (0.9,1.3) 1.7 (1.4,2) 1.6 (1.3,1.9) 

5 1.1 (0.9,1.3) 2.9 (2.7,3.1) 1 (1,1) 1.2 (0.9,1.5) 1.8 (1.5,2) 2 (1.6, 2.4) 

10 1.3 (1,1.6) 2.8 (2.5,3) 1.1 (0.9,1.3) 1.3 (1,1.6) 1.8 (1.4,2.2) 2.6 (2.3,2.9) 

20 1.3 (0.9,1.7) 3.1 (2.9,3.3) 1.3 (0.9,1.7) 1.8 (1.3,2.3) 1.9 (1.5,2.2) 4.9 (4.7,5.1) 

30 1.6 (1.3,1.9) 3.3 (3,3.6) 1.5 (1.1,1.9) 2.5 (2.2,2.8) 2 (1.7,2.3) 5 (5,5) 

(B) SNR 

input SNR noisy BP MBSS WF WPD PM 

1 2.238 15.399 2.1390 2.565 7.734 6.903 

5 2.579 15.711 2.505 3.227 8.695 8.936 

10 3.097 16.207 3.017 3.983 8.912 13.594 

20 4.344 17.322 4.200 7.786 9.319 31.798 

30 5.982 18.700 5.696 13.142 10.113 31.930 

(C) SSNR 

input SNR noisy BP MBSS WF WPD PM 

1 1.755 3.278 1.744 1.793 2.472 2.292 

5 1.794 3.312 1.786 1.869 2.667 2.526 

10 1.854 3.369 1.845 1.956 2.765 3.063 

20 1.998 3.495 1.981 2.395 2.859 6.470 

30 2.187 3.651 2.155 3.057 3.004 5.187 

(D) LSD 

input SNR noisy BP MBSS WF WPD PM 

1 1.260 0.537 1.834 2.125 1.011 0.767 

5 1.002 0.352 1.826 2.020 0.655 0.620 

10 1.050 0.501 1.708 1.743 0.520 0.560 

20 0.697 0.312 1.500 1.267 0.218 0.311 

30 0.528 0.279 1.256 1.044 0.144 0.279 

(E) IS 

input SNR noisy BP MBSS WF WPD PM 

1 1.281 0.186 3.455 5.296 0.833 0.392 

5 0.731 0.076 3.410 4.559 0.334 0.242 

10 0.815 0.155 2.828 2.997 0.216 0.191 

20 0.313 0.056 1.994 1.294 0.049 0.054 

30 0.169 0.043 1.266 0.803 0.023 0.043 

(F) AE 

input SNR noisy BP MBSS WF WPD PM 

1 3.51 3.51 4.21 2.75 5.16 3.52 

5 3.51 3.51 4.21 2.79 5.15 3.52 

10 3.51 3.51 3.97 3.06 4.99 3.52 

20 3.51 3.51 3.84 3.11 4.64 3.52 

30 3.51 3.51 3.75 3.14 4.32 3.52 
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3.2. Bioacoustics call of Barbastellabarbastellus bat 

As an alternative, the echolocation call of the Barbastella barbastellus bat includes very short 

duration sound pulses separated by non-fixed intervals. The pulses cover long Frequency 

Modulated (FM) band over the region [25-100] KHz, which were also slowed down by a time 

expansion factor of 10 to be in the audible range, as demonstrated in figure (12a). Since the 

frequency band covered by the sound pulses is large, BP approach was not able to remove most 

of the noise into this band, as graphically shown in figure (12b) and numerically in the second 

column(s) of Table 2. Meanwhile, the pulses were temporally spread out by MBSS approach; 

however, it removed reasonable amount of noise, as displayed in figure (12c) and the third 

column(s) of Table 2. The WF approach removed higher amount of noise except those exist in the 

beginning of the signal. There are also spectral cut from the pulses along the frequency axis and 

the temporal resolution is degraded, as given in figure (12d) and the fourth column(s) of Table 2. 

Although the spectral resolution of the spectrograms generated by the WPD approach still corrupt 

and low frequency noise was not removed, there were no possibility for the repetition of the 

pulses along the frequency axis because the covered FM band is considerably high, as clarified in 

figure (12e) and the fifth column(s) of Table 2. The PM has the same performance as in 

application 1, by keeping the temporal and spectral properties of the pulses while removed most 

of the attached noise, as shown in figure (12f) and the sixth column(s) of Table 2.  

 

Figure 12. (a) One of Barbastella Barbastellus bat echolocation calls at SNR = 5 dB (with 

expansion factor of 10), and its enhanced spectrogram by (b) BP, (c) MBSS, (d) WF, (e) WPD, 

and (f) PM. 
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Table 2. The subjective and objective measures for the spectrogram of Barbastella barbastellus call 

enhanced by BP, MBSS, WF, WPD, and PM 

(A) MOS 

input 

SNR 
noisy BP MBSS WF WPD PM 

1 1 (1,1) 1.2 (0.9,1.5) 1.3 (1,1.6) 2.1 (1.9,2.3) 2.7 (2.4,3) 2 (1.7,2.3) 

5 1.1 (0.9,1.3) 1.3 (1,1.6) 1.4 (1.1,1.7) 2.4 (2.1,2.7) 2.8 (2.5,3.1) 2.4 (2.1,2.7) 

10 1.3 (0.9,1.7) 1.4 (1,1.8) 1.5 (1.2,1.8) 2.6 (2.3,2.9) 2.9 (2.7,3.1) 3.4 (3.1,3.7) 

20 1.4 (1,1.7) 1.6 (1.3,1.9) 1.9 (1.7,2.1) 2.8 (2.4,3.2) 3.1 (2.9,3.3) 5 (5,5) 

30 1.7 (1.4,2) 1.9 (1.7,2.1) 2.3 (2,2.6) 2.9 (2.7,3.1) 3.2 (2.9,3.5) 5 (5,5) 

(B) SNR 

input SNR noisy BP MBSS WF WPD PM 

1 2.303 3.379 3.757 7.918 10.939 7.140 

5 2.662 3.760 4.307 9.272 11.595 9.500 

10 3.181 4.273 5.023 10.456 12.149 14.289 

20 4.393 5.454 6.937 11.691 13.089 22.826 

30 5.745 6.732 9.236 11.917 13.182 22.872 

(C) SSNR 

input SNR noisy BP MBSS WF WPD PM 

1 1.763 1.886 1.931 2.510 2.843 2.320 

5 1.804 1.930 1.995 2.782 2.961 2.592 

10 1.864 1.989 2.078 3.182 3.077 3.158 

20 2.004 2.126 2.312 5.017 3.376 6.814 

30 2.163 2.278 2.659 4.233 3.628 3.386 

(D) LSD 

input SNR noisy BP MBSS WF WPD PM 

1 0.942 1.015 0.600 0.194 0.278 0.610 

5 0.943 0.888 0.466 0.140 0.191 0.485 

10 0.859 0.715 0.417 0.209 0.171 0.360 

20 0.571 0.535 0.244 0.201 0.124 0.121 

30 0.407 0.367 0.135 0.392 0.173 0.195 

(E) IS 

input SNR noisy BP MBSS WF WPD PM 

1 0.630 0.777 0.228 0.036 0.059 0.234 

5 0.631 0.564 0.133 0.021 0.032 0.141 

10 0.506 0.341 0.107 0.025 0.020 0.074 

20 0.203 0.179 0.042 0.024 0.015 0.008 

30 0.100 0.082 0.022 0.071 0.018 0.021 

(F) AE 

input SNR noisy BP MBSS WF WPD PM 

1 57 57 56.6 6 16.27 57 

5 57 57 56.8 9.31 19 57 

10 57 57 56.8 14.54 34.52 57 

20 57 57 56.85 21.13 47.33 57 

30 57 57 56.85 30.46 54.18 57 

 

3.3. Bioacoustics call of Vanellus vanellus bird 

As an example for a multi harmonic sound stream in the human hearing range, the bioacoustics 

call of Vanellus vanellus bird was investigated in the region bounded by 6 KHz. The sound 

stream contains three FM long pulses with dominant frequencies around (1, 2.2, and 4) KHz; 

respectively, followed by three downstream CF short pulses of fundamental frequencies around 

(2, 3, and 4) KHz; respectively, as given in figure (13a). Enhancement by the BP approach did not 

produce clear spectrogram, since the pulses cover much of the frequency axis, given high 
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constraint to the rejected band by this approach, as shown in figure (13b) and the second 

column(s) of Table 3. The enhanced spectrogram generated by the MBSS approach has 

reasonable temporal resolution and degraded spectral resolution of the sound pulses, especially 

for the downstream pulses which corrupted by high spectral distortion, as displayed in figure 

(13c) and the third column(s) of Table 3.On the other hand, the temporal and spectral resolutions 

of the spectrogram generated by WF approach are acceptable, although there is little spectral 

leakage for the downstream pulses and initial sound noise (< 0.03 sec) were not removed, as 

plotted in figure (13d) and the fourth column(s) of Table 3.Whereas the low frequency noise was 

not enhanced by the WPD approach, many temporal bands of noises were removed. The 

decomposition of the sound stream presented spectral mirrors of the weak harmonic patterns and 

almost eliminated the downstream pulses, as demonstrated in figure (13e) and the fifth column(s) 

of Table 3. Meanwhile, the enhanced spectrogram by PMre established high temporal and 

spectral resolutions of the sound pulses, as indicated by the obtained LSD, with high distinction 

from the attached noise, as designated by the obtained SNR and shown in figure (13f) and the 

sixth column(s) of Table 3.  

 

Figure 13. (a) One of Vanellus vanellus bird calls at SNR = 10 dB, and its enhanced spectrogram by 

(b) BP, (c) MBSS, (d) WF, (e) WPD, and (f) PM. 

Table 3. The subjective and objective measures for the spectrogram of Vanellus vanellus bird call 

enhanced by BP, MBSS, WF, WPD, and PM 
(A) MOS 

input 

SNR 
noisy BP MBSS WF WPD PM 

1 1 (1,1) 1.5 (1.2,1.8) 1.4 (1.1,1.7) 2 (1.7,2.3) 1.7 (1.4,2) 2.4 (2.1,2.7) 

5 1.4 (1.1,1.7) 1.6 (1.3,1.9) 1.5 (1.2,1.8) 2.2 (1.9,2.5) 1.8 (1.4,2.2) 2.9 (2.7,3.1) 

10 1.3 (1,1.6) 1.8 (1.4,2.2) 1.7 (1.3, 2.1) 2.4 (2.1,2.7) 1.9 (1.7,2.1) 3.7 (3.4,4) 

20 1.5 (1.2,1.8) 1.9 (1.5,2.3) 1.8 (1.4,2.2) 2.6 (2.3,2.9) 1.9 (1.7,2.1) 4.7 (4.4,5) 

30 1.6 (1.3,1.9) 2 (1.6,2.4) 1.8 (1.4,2.2) 2.7 (2.4,3) 1.9 (1.7,2.1) 5 (5,5) 

(B) SNR 

input SNR noisy BP MBSS WF WPD PM 

1 1.651 2.635 2.489 3.591 2.895 4.371 

5 1.941 2.843 2.689 4.046 3.180 5.414 

10 2.207 3.153 2.912 4.452 3.317 6.807 

20 2.662 3.532 3.108 4.771 3.422 9.078 

30 2.814 3.605 3.163 4.884 3.339 9.480 
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(C) SSNR 

input SNR noisy BP MBSS WF WPD PM 

1 1.688 1.801 1.784 1.925 1.896 2.001 

5 1.721 1.825 1.807 1.995 1.989 2.121 

10 1.752 1.861 1.833 2.059 2.036 2.283 

20 1.804 1.904 1.856 2.119 2.120 2.564 

30 1.822 1.913 1.863 2.162 1.991 2.621 

(D) LSD 

input SNR noisy BP MBSS WF WPD PM 

1 1.172 1.083 0.982 1.220 1.009 0.790 

5 1.042 0.938 0.876 1.141 0.907 0.505 

10 0.988 0.888 0.537 1.028 0.783 0.537 

20 0.814 0.783 0.753 1.012 0.587 0.267 

30 0.718 0.714 0.515 0.968 0.579 0.267 

(E) IS 

input SNR noisy BP MBSS WF WPD PM 

1 0.630 0.922 0.703 1.221 0.856 0.423 

5 0.803 0.649 0.538 1.031 0.657 0.156 

10 0.707 0.568 0.182 0.804 0.469 0.177 

20 0.451 0.425 0.385 0.771 0.248 0.041 

30 0.341 0.345 0.169 0.696 0.233 0.041 

(F) AE 

input SNR noisy BP MBSS WF WPD PM 

1 8.47 8.47 14.63 10.32 3.13 8.51 

5 8.47 8.47 12.51 10.3 3.82 8.51 

10 8.47 8.47 9.78 9.46 4.17 8.51 

20 8.47 8.47 9.12 8.72 7.12 8.51 

30 8.47 8.47 8.65 8.19 7.44 8.51 

 
From the pattern recognition point of view, different AE values to those of the original 

spectrogram, reflect changing in the shape of some or all of the sound patterns, which result in 

non-accuracy in further pattern recognition results. Unlike, similar AE values do not ensure the 

shape of the sound pattern is similar to its original shape, but it may changes in a way that its 

aspect ratio is constant. 

4. Extended applications 

The spectrograms obtained by the proposed method (PM) displayed how it is powerful and 

consistent to enhance different structure bioacoustics calls. Therefore, these enhanced 

spectrograms can be implemented in various post processing tasks. In this section, the three most 

important implementations of the generated spectrogram by PM will be explored. 

4.1. Power and frequency contours 

The three variables of the enhanced spectrogram (i.e., time, frequency, and power spectrum) may 

be plotted in different orders to obtain its power and/or frequency contours, as visible for the 

bioacoustics call of Rhinolophus hipposideros bat (with expansion factor of 13) in figure (14), 

after its spectrogram was enhanced by PM. The power contours provides an image of the 

instantaneous power contents of the sound patterns and can be used for specific sound power 

detection after calculating the areas enclosed by these contours. While the frequency contours 

provide an image of the instantaneous frequency contents of the recorded bioacoustics call and 

can be used for designing more reliable frequency filters. 
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Figure 14. The enhanced (a) power and (b) frequency contours for Rhinolophus hipposideros bat 

call 

4.2. The enhanced wave form of the bioacoustics call 

By transforming the enhanced spectrogram variables back to the time domain by Inverse Fast 

Fourier Transform (IFFT), the enhanced wave form of the call is obtained, as given in figure 

(15).The phase information obtained through the former Short Time Fourier Transform (STFT) is 

used to reconstruct the enhanced wave form, following the flowchart of figure (15). The output 

waveform can be used for reliable extraction of the bioacoustics temporal features suchlike zero 

crossing rate, short time energy, temporal roll-off, and temporal spread of the sound patterns [1]. 

 

 

  

Figure 15. (upper) The 3D enhanced spectrogram for the bioacoustics call of Rhinolophus 

hipposideros bat(with expansion factor of 13)and flow chart to reconstruct the waveform of its 

sound stream. (bottom) the original and the reconstructed wave form of the sound stream; 

respectively. 

4.3. Bioacoustics calls classification 

From the enhanced spectrogram, simple and reduced number of 1D featuresand/or 2D features 

can be extracted for complete pattern recognition of the bioacoustics sound. The 1D features are 

the signal features suchlike the covered frequency band(s), peak frequency, pulse duration, 

interval between sound pulses, etc. while the 2D features are the image features suchlike 

eccentricity and centroid. As a test case, a classifier of Vanellus vanellus, Parus major, and Sitta 



Signal & Image Processing : An International Journal (SIPIJ) Vol.3, No.2, April 2012 

17 

Canadensis birds has been constructed using the eccentricity (a/b) and the vertical coordinate of 

the centroid (c) features, as shown in figure (16(ii)), extracted from the enhanced spectrogram of 

each bird sound, as displayed in figure (16(i)).  The classifier was trained by 26, 30, and 37 sound 

patterns of the three birds; respectively, to define the rough dividing contours, given in figure 

(16(iii)). Afterwards, the classifier was tested by another 7, 8, and 10 sound patterns of the three 

birds; respectively, beside 7 patterns of Barbastella barbastellus bat and 5 patterns of Rhinolophus 

Blasii bat, giving 94.59% classification accuracy (two sound patterns of Sitta Canadensis wrongly 

detected as Vanellus vanellus), as plotted in figure (16(iii)). It may be realized that even simple 

classifier can separate out the sound patterns into the correct bioacoustics source, providing that 

distinctive features were selected and sufficient training patterns were used. 

 
(i) 

 
(ii) 

 
(iii) 

Figure 16. (i) Enhanced spectrogram for one of Sitta Canadensis bird contains the 

strongestsound patterns, indicating how the eccentricity (a/b) and the vertical coordinate of 

the centroid (c) are extracted for one of its sound patterns. The units of a and b are in pixeld, 

and c in pixel number. (ii) Simple classifier structure with input of the two features, which 

form the classification space, and the outputs are four classes for Vanellus vanellus, Parus 

major, Sitta Canadensis , and unknown sounds. (iii) The classification space with three 

dividing contours encounters the features of the three birds, respectively, at which the 

surrounded region is for unknown sound features. The classification results also included 

with two sound patterns of Sitta Canadensis wrongly detected as Vanellus vanellus. 

5. Conclusion 

Spectrogram reading provides a direct method for hands-on learning of the characteristics of 

bioacoustics calls, therefore, a variety of enhancement techniques have been considered over the 

past years to remove the attached noises. In this paper, a spectrogram enhancement method was 

developed based on high accurate edge detection of the enclosed sound patterns and removing the 
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surrounding noise. The crest factor was presented as a smoothed version of the spectrogram 

image, avoiding the threshold problem of usual smoothing filters, suchlike Gaussian filter in 

Canny edge detector. The proposed method was applied to enhance the limited dynamic range 

spectrogram of different structure bioacoustics calls, in comparison to the four commonly used 

enhancement approaches, which are band pass filter (BP), multi-band spectral subtraction 

(MBSS), Wiener filter (WF), and wavelet packet decomposition (WPD) approaches. The 

comparison was established on one subjective measure [mean opinion score] and four objective 

measures [signal to noise ratio, segmental signal to noise ratio, log spectral distance, and Itakura 

Saito]of the spectrograms obtained by the five methods at different SNR. The results showed that 

the shorter the frequency band of FM pulse, the better the enhancement with BP and WPD. The 

larger the upstream interval before the first pulse, the better the enhancement with WF. The 

longer the CF pulse at high SNR, the better the enhancement with MBSS because it tends to 

spread the patterns over time. Meanwhile, the proposed method produced highly efficient 

enhanced spectrograms for all of the investigated calls. 

The temporal and spectral resolutions of the spectrograms produced by the BP approach are of 

high accuracy, since it does not operate a post processing to the full range of the noisy 

spectrogram, but only rejects the band which estimated to be noise. This was not the case with 

(MBSS, WF, and WPD) which post process the spectrograms for enhancement, results in 

changing the temporal and/or spectral resolutions. In the meantime, the edge detection algorithm 

of the proposed method was able to preserve the sound pulses into their almost original temporal 

and spectral locations while processing the noisy spectrogram. This is very important issue for 

any further pattern recognition assignment based on the enhanced spectrogram. 

 

As a future aspect to this research work, an investigation will be made to avoid the loss of weak 

patterns done through limiting the dynamic range of the spectrogram. Moreover, improving the 

original spectrogram generation by adapting the applied STFT settings, this in correspondence 

improves the enhanced spectrogram. 
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