SENSITIVITY AND INPUT IMPEDANCE

When used for measuring voltage, the input impedance of the multimeter must be very high compared to the impedance of the circuit being measured; otherwise circuit operation may be changed, and the reading will also be inaccurate.

Meters with electronic amplifiers (all digital multimeters and some analog meters) have fixed input impedance that is high enough not to disturb most circuits. This is often either one or tenmegohms; the standardization of the input resistance allows the use of external high-resistance probes which form a voltage divider with the input resistance to extend voltage range up to tens of thousands of volts.

Most analog multimters of the moving-pointer type are unbuffered, and draw current from the circuit under test to deflect the meter pointer. The impedance of the meter varies depending on the basic sensitivity of the meter movement and the range which is selected. For example, a meter with a typical 20,000 ohms/volt sensitivity will have an input resistance of two million ohms on the 100 volt range (100 V * 20,000 ohms/volt = 2,000,000 ohms). On every range, at full scale voltage of the range, the full current required to deflect the meter movement is taken from the circuit under test.
Lower sensitivity meter movements are acceptable for testing in circuits where source impedances are low compared to the meter impedance, for example, power circuits; these meters are more rugged mechanically. Some measurements in signal circuits require higher sensitivity movements so as not to load the circuit under test with the meter impedance.[6]

Sometimes sensitivity is confused with resolution of a meter, which is defined as the lowest voltage, current or resistance change that can change the observed reading.

For general-purpose digital multimeters, the lowest voltage range is typically several hundred millivolts AC or DC, but the lowest current range may be several hundred milliamperes, although instruments with greater current sensitivity are available. Measurement of low resistance requires lead resistance (measured by touching the test probes together) to be subtracted for best accuracy.

The upper end of multimeter measurement ranges varies considerably; measurements over perhaps 600 volts, 10 amperes, or 100 megohms may require a specialized test instrument.
Alternating current sensing

Since the basic indicator system in either an analog or digital meter responds to DC only, a multimeter includes an AC to DC conversion circuit for making alternating current measurements. Basic meters utilize a rectifier circuit to measure the average or peak absolute value of the voltage, but are calibrated to show the calculated root mean square (RMS) value for a sinusoidal waveform; this will give correct readings for alternating current as used in power distribution. User guides for some such meters give correction factors for some simple non-sinusoidal waveforms, to allow the correct root mean square (RMS) equivalent value to be calculated. More expensive multimeters include an AC to DC converter that measures the true RMS value of the waveform within certain limits; the user manual for the meter may indicate the limits of the crest factor and frequency for which the meter calibration is valid. RMS sensing is necessary for measurements on non-sinusoidal periodic waveforms, such as found in audio signals and variable-frequency drives.

Source: http://web.ua.es/docavis/magnet/multimeter.html