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 After reading this lesson, you will learn about 
 Representation of signals following the Gram-Schmidt orthogonalization 

procedure; 
 Signal space and signal constellation; 
 Use of signal space for signal detection; 
 The fundamental detection problem in a receiver; 

 
 As mentioned earlier in Module #1, a digital modulator is supposed to accept 
stream of information-bearing symbols (usually bits) and represent them appropriately 
with or without the help of a carrier. So, a very important issue in-between is to represent 
information symbols in suitable energy signals so that the signals can be modulated, 
amplified and transmitted. For a continuous stream of input of information sequence what 
kind of strategy should we take to represent them as signals? One may think of multiple 
alternatives including the following: 

• Consider one symbol at a time and design a signal for the symbol. 
• When several bits make one symbol, consider one bit at a time and design for the 

symbol. 
• Consider a larger group of symbols in a sequence and design signals spread over 

long time duration [sequence based modulation - demodulation strategy]. 
 

 Let us consider a systematic approach to identify M symbols from the input 
information sequence. If the format of input information is known, this is not a difficult 
task. For example, if the information sequence is binary and if we choose M = 2, we can 
identify ‘1’ as one symbol and ‘0’ as the other. Else, if we choose M = 4 for the same 
binary information sequence; we may consider a group of two bits at a time to define one 
symbol. The duration of a symbol now is twice the duration of one information bit. If the 
rate of incoming information is Rb bits/sec, the symbol rate is Rb/2 symbols per second. 
Usually, for practical considerations, M is so chosen that M = 2m, where ‘m’ is a positive 
integer.   

 The next issue is to design ‘M’ energy signals for these M symbols such that 
the energy of each signal is limited within the symbol duration. This problem is 
addressed in general by a scheme known as Gram-Schmidt Orthogonalization 
  

Gram-Schmidt Orthogonalization  
The principle of Gram-Schmidt Orthogonalization (GSO) states that, any set of M energy 
signals, {si(t)}, 1 ≤ i ≤ M can be expressed as linear combinations of N orthonormal basis 
functions, where N ≤ M. 
If s1(t), s2(t), ….., sM(t) are real valued energy signals, each of duration ‘T’ sec, 
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The ϕj(t)-s are the basis functions and ‘sij’-s are scalar coefficients. We will consider real-
valued basis functions ϕj (t) - s which are orthonormal to each other, i.e., 
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Note that each basis function has unit energy over the symbol duration ‘T’. Now, if the 
basis functions are known and the scalars are given, we can generate the energy signals, 
by following Fig. 4.16.1. Or, alternatively, if we know the signals and the basis functions, 
we know the corresponding scalar coefficients (Fig. 4.16.2). 
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Fig. 4.16.1 Pictorial depiction of Equation 4.16.1 
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Fig. 4.16.2 Pictorial depiction of Equation 4.16.2 
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Justification for G-S-O procedure 
Part – I: We show that any given set of energy signals, {si (t)}, 1 ≤ i ≤ M over 0 ≤ t < T, 
can be completely described by a subset of energy signals whose elements are linearly 
independent. 
 To start with, let us assume that all si(t) -s are not linearly independent. Then, 
there must exist a set of coefficients {ai}, 1 < i ≤ M, not all of which are zero, such that, 
 
          a1s1 (t) + a2s2 (t) + …… + aM sM (t) = 0,     0 ≤ t < T    4.16.4 
 
Verify that even if two coefficients are not zero, e.g. a1 ≠ 0 and a3 ≠ 0, then s1(t) and s3(t) 
are dependent signals. 
 
Let us arbitrarily set, aM ≠ 0. Then, 
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Eq.4.16.5 shows that sM(t) could be expressed as a linear combination of other si(t) – s,    
i = 1, 2, .., (M – 1). 
 
Next, we consider a reduced set with (M-1) signals {si(t)},         i = 1,2,….., (M – 1).  
This set may be either linearly independent or not. If not, there exists a set of {bi},            
i = 1,2…, (M – 1),  not all equal to zero such that, 

                                    0 ≤ t < T        4.16.6 
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Again, arbitrarily assuming that bM-1 ≠ 0, we may express sM-1(t)  as: 
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Now, following the above procedure for testing linear independence of the remaining 
signals, eventually we will end up with a subset of linearly independent signals.  Let 
{si(t)}, i = 1, 2, …., N ≤ M denote this subset. 
 
Part – II :  We now show that it is possible to construct a set of ‘N’ orthonormal basis 
functions ϕ1(t), ϕ2(t), ….., ϕN(t) from {si(t)},   i = 1, 2, ….., N.  

Let us choose the first basis function as, 1
1
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Now, from Eq. 4.16.2, we can write       
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Let us now define an intermediate function: 
g2(t) = s2(t) – s21ϕ1(t);  0 ≤ t < T      4.16.10 

Note that, 
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So, we verified that the function g2(t) is orthogonal to the first basis function. This gives 
us a clue to determine the second basis function. 
Now, energy of g2(t)  
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Proceeding in a similar manner, we can determine the third basis function, ϕ3(t). For i=3, 

                      ;         0 ≤ t <T 
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Indeed, in general, 
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and                        4.16.16 
0

( ). ( )
T
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t

for i = 1, 2,….., N and j = 1, 2, …, M 
 
Let us summarize the steps to determine the orthonormal basis functions following the 
Gram-Schmidt Orthogonalization procedure:  
 If the signal set {sj(t)} is known for j = 1, 2,….., M,   0 ≤ t <T, 

• Derive a subset of linearly independent energy signals, {si(t)},i = 1, 2,….., N ≤ M. 
• Find the energy of s1(t) as this energy helps in determining the first basis function  

ϕ1(t), which is a normalized form of the first signal. Note that the choice of this 
‘first’ signal is arbitrary. 

•  Find the scalar ‘s21’, energy of the second signal (E 2), a special function ‘g2(t)’ 
which is orthogonal to the first basis function and then finally the second 
orthonormal basis function ϕ2(t) 

•  Follow the same procedure as that of finding the second basis function to obtain 
the other basis functions.  

 
Concept of signal space   
Let, for a convenient set of  {ϕj (t)}, j = 1,2,…,N  and 0 ≤ t  <T, 
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Now, we can represent a signal si(t) as a column vector whose elements are the scalar 
coefficients sij, j = 1, 2, ….., N : 
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These M energy signals or vectors can be viewed as a set of M points in an N – 
dimensional Euclidean space, known as the ‘Signal Space’ (Fig.4.16.3). Signal 
Constellation is the collection of M signals points (or messages) on the signal space. 
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Fig. 4.16.3 Sketch of a 2-dimentional-signal space showing three signal vectors 
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Now, the length or norm of a vector is denoted as is . The squared norm is the inner 

product of the vector: 
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The cosine of the angle between two vectors is defined as: 
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If  is the energy of the i-th  signal vector, iE
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For a pair of signals si (t) and sk(t), ( )
N2 2

i k ij kj
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It may now be guessed intuitively that we should choose si (t) and sk (t) such that the 
Euclidean distance between them, i.e. i k-s s  is as much as possible to ensure that their 

detection is more robust even in presence of noise. For example, if s1 (t) and s2 (t) have 
same energy E, (i.e. they are equidistance from the origin), then an obvious choice for 
maximum distance of separation is, s1(t) = -s2(t). 
 
Use of Signal Space for Signal Detection in a Receiver   
The signal space defined above, is very useful for designing a receiver as well. In a sense, 
much of the features of a modulation scheme, such as the number of symbols used and 
the energy carried by the symbols,  is embedded in the description of its signal space. So, 
in absence of any noise, the receiver should detect one of these valid symbols only. 
However, the received symbols are usually corrupted and once placed in the signal space, 
they may not match with the valid signal points in some respect or the other. Let us 
briefly consider the task of a good receiver in such a situation. Let us assume the 
following: 
 

1. One of the M signals si(t), i=1,2,….,M is transmitted in each time slot of       
duration ‘T’ sec. 

2. All symbols are equally probable, i.e. the probability of occurrence of si(t) = 1/M, 
for all ‘i’. 

3. Additive White Gaussian Noise (AWGN) processes W (t) is assumed with a noise 

sample function w (t) having mean = 0 and power spectral density 0N
2

  [N0: 

single sided power spectral density of additive white Gaussian noise. Noise is 
discussed more in next two lessons]  

4. Detection is on a symbol-by-symbol basis. 
 

Now, if R (t) denotes the received random process with a sample function r (t), we may 
write,  

                  ;          0 ≤  t < T   and  i = 1,2,….,M. ( ) ( ) ( )ir t =s t +w t
 
The job of the receiver is to make “best estimate” of the transmitted signal si (t) (or, 
equivalently, the corresponding message symbol mi) upon receiving r(t). We map the 
received sample function r (t) on the signal space to include a ‘received vector’ or 
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‘received signal point’. This helps us to identify a noise vector, w(t) ,also. The detection 
problem can now be stated as: 
‘Given an observation / received signal vector ( r ), the receiver has to perform a 

mapping from r to an estimate   for the transmitted symbol in a way that would 
minimize the average probability of symbol error’. 

∧

m im

 
 Maximum Likelihood Detection scheme provides a general solution to this 
problem when the noise is additive and Gaussian. We discuss this important detection 
scheme in Lesson #19. 

 
 

Problems 
 

Q4.16.1) Sketch two signals, which are orthonormal to each other over 1 sec.  
  Verify that Eq4.16.3 is valid. 
 
Q4.16.2) Let, S1(t) = Cos2πft, S2(t) = Cos (2πft + π/3) and S3(t) = Sin 2πft.  
  Comment whether the three signals are linearly independent? 
 
Q4.16.3) Consider a binary random sequence of 1 and 0. Draw a signal 

constellation for the same. 
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