Pin Details of 8086

The following pin function descriptions are for 8086 systems in either minimum or maximum mode. The "Local Bus" in these descriptions is the direct multiplexed bus interface connection to the 8086 (without regard to additional bus buffers).

AD15±AD0 2±16, 39 - ADDRESS DATA BUS: These lines constitute the time multiplexed memory/IO address (T1), and data (T2, T3, TW, T4) bus. A0 is analogous to BHE for the lower byte of the data bus, pins D7±D0. It is LOW during T1 when a byte is to be transferred on the lower portion of the bus in memory or I/O operations. Eight-bit oriented devices tied to the lower half would normally use A0 to condition chip select functions. (See BHE.) These lines are active HIGH and float to 3-state OFF during interrupt acknowledge and local bus "hold acknowledge".

A19/S6, A18/S5, A17/S4, A16/S3 35±38 - ADDRESS/STATUS: During T1 these are the four most significant, address lines for memory operations. During I/O operations these lines are LOW. During memory and I/O operations, status information is available on these lines during T2, T3, TW, T4. The status of the interrupt enable FLAG bit (S5) is updated at the beginning of each CLK cycle. A17/S4 and A16/S3 are encoded as shown. This information indicates which relocation register is presently being used for data accessing. These lines float to 3-state OFF during local bus "hold acknowledge."

BHE/S7 34 - BUS HIGH ENABLE/STATUS: During T1 the bus high enable signal (BHE) should be used to enable data onto the most significant half of the data bus, pins D15±D8. Eight-bit oriented devices tied to the upper half of the bus would normally use BHE to condition chip select functions. BHE is LOW during T1 for read, write, and interrupt acknowledge cycles when a byte is to be transferred on the high portion of the bus. The S7 status information is available during T2, T3, and T4. The signal is active LOW, and floats to 3-state OFF in "hold". It is LOW during T1 for the first interrupt acknowledge cycle.
RD 32 READ: Read strobe indicates that the processor is performing a memory or I/O read cycle, depending on the state of the S2 pin. This signal is used to read devices which reside on the 8086 local bus. RD is active LOW during T2, T3 and TW of any read cycle, and is guaranteed to remain HIGH in T2 until the 8086 local bus has floated. This signal floats to 3-state OFF in "hold acknowledge".

READY 22 - READY: is the acknowledgement from the addressed memory or I/O device that it will complete the data transfer. The READY signal from memory/IO is synchronized by the 8284A Clock Generator to form READY. This signal is active HIGH. The 8086 READY input is not synchronized. Correct operation is not guaranteed if the setup and hold times are not met.
INTR 18 - INTERRUPT REQUEST: is a level triggered input which is sampled during the last clock cycle of each instruction to determine if the processor should enter into an interrupt acknowledge operation. A subroutine is vectored to via an interrupt vector lookup table located in system memory. It can be internally masked by software resetting the interrupt enable bit. INTR is internally synchronized. This signal is active HIGH.

TEST 23 TEST: input is examined by the "Wait" instruction. If the TEST input is LOW execution continues, otherwise the processor waits in an "Idle" state. This input is synchronized internally during each clock cycle on the leading edge of CLK.

NMI 17 NON-MASKABLE INTERRUPT an edge triggered input which causes a type 2 interrupt. A subroutine is vectored to via an interrupt vector lookup table located in system memory. NMI is not maskable internally by software. A transition from LOW to HIGH initiates the interrupt at the end of the current instruction. This input is internally synchronized.

RESET 21 - RESET: causes the processor to immediately terminate its present activity. The signal must be active HIGH for at least four clock cycles. It restarts execution, as described in the Instruction Set description, when RESET returns LOW. RESET is internally synchronized.

CLK 19 CLOCK: provides the basic timing for the processor and bus controller. It is asymmetric with a 33% duty cycle to provide optimized internal timing.

VCC 40 VCC: 5V power supply pin. **GND 1, 20 GROUND**

MN/MX 33 I MINIMUM/MAXIMUM: indicates what mode the processor is to operate in. The two modes are discussed in the following sections.

S2, S1, S0 26±28 STATUS: active during T4, T1, and T2 and is returned to the passive state (1, 1, 1) during T3 or during TW when READY is HIGH. This status is used by the 8288 Bus Controller to generate all memory and I/O access control signals. Any change by S2, S1, or S0 during T4 is used to indicate the beginning of a bus cycle, and the return to the passive state in T3 or TW is used to indicate the end of a bus cycle

Source: http://nprcet.org/e%20content/Misc/e-Learning/IT/IV%20Sem/CS%202252-Microprocessors%20and%20Microcontrollers.pdf