D0 - D7 These are the data input/output lines for the device. All information read from and written to the 8255 occurs via these 8 data lines.

CS (Chip Select Input). If this line is a logical 0, the microprocessor can read and write to the 8255.

RD (Read Input) Whenever this input line is a logical 0 and the RD input is a logical 0, the 8255 data outputs are enabled onto the system data bus.
WR (Write Input) Whenever this input line is a logical 0 and the CS input is a logical 0, data is written to the 8255 from the system data bus.

A0 - A1 (Address Inputs) The logical combination of these two input lines determines which internal register of the 8255 data is written to or read from.

RESET The 8255 is placed into its reset state if this input line is a logical 1. All peripheral ports are set to the input mode.

PA0 - PA7, PB0 - PB7, PC0 - PC7 These signal lines are used as 8-bit I/O ports. They can be connected to peripheral devices. The 8255 has three 8 bit I/O ports and each one can be connected to the physical lines of an external device. These lines are labeled PA0-PA7, PB0-PB7, and PC0-PC7. The groups of the signals are divided into three different I/O ports labeled port A (PA), port B (PB), and port C (PC).

4.2.3 Operational Modes of 8255

There are two main operational modes of 8255:

1. Input/output mode
2. Bit set/reset mode

Input/Output Mode

There are three types of the input/output mode. They are as follows:

Mode 0

In this mode, the ports can be used for simple input/output operations without handshaking. If both port A and B are initialized in mode 0, the two halves of port C can be either used together as an additional 8-bit port, or they can be used as individual 4-bit ports. Since the two halves of port C are independent, they may be used such that one-half is initialized as an input port while the other half is initialized as an output port. The input output features in mode 0 are as follows:

1. O/p are latched.
2. I/p are buffered not latched.
3. Port do not have handshake or interrupt capability.

Mode 1

When we wish to use port A or port B for handshake (strobed) input or output operation, we initialise that port in mode 1 (port A and port B can be initialised to operate in different modes, ie, for eg, port A can operate in mode 0 and port B in mode 1). Some of the pins of port C function as handshake lines. For port B in this mode (irrespective of whether is acting as an input port or output port), PC0, PC1 and PC2 pins function as handshake lines. If port A is initialised as mode 1 input port, then, PC3, PC4 and PC5 function as handshake signals. Pins PC6 and PC7 are available for use as input/output lines. The mode 1 which supports handshaking has following features:

1. Two ports i.e. port A and B can be use as 8-bit i/o port.
2. Each port uses three lines of port c as handshake signal and remaining two signals can be function as i/o port.
3. interrupt logic is supported.
4. Input and Output data are latched.

Mode 2
Only group A can be initialised in this mode. Port A can be used for bidirectional handshake data transfer. This means that data can be input or output on the same eight lines (PA0 - PA7). Pins PC3 - PC7 are used as handshake lines for port A. The remaining pins of port C (PC0 - PC2) can be used as input/output lines if group B is initialised in mode 0. In this mode, the 8255 may be used to extend the system bus to a slave microprocessor or to transfer data bytes to and from a floppy disk controller.

Bit Set/Reset (BSR) mode

In this mode only port b can be used (as an output port). Each line of port C (PC0 - PC7) can be set/reset by suitably loading the command word register. No effect occurs in input-output mode. The individual bits of port c can be set or reset by sending the signal OUT instruction to the control register.

Source: http://nprcot.org/e%20content/Misc/e-Learning/IT/IV%20Sem/CS%202252-Microprocessors%20and%20Microcontrollers.pdf