
Performance Comparison of Hybrid Signed 
Digit Arithmetic in Efficient Computing 

 
VISHAL AWASTHI1 

1Department of Electronics & Communication Engineering 
UIET., C.S.J.M.University, Kanpur-24, U.P., India 

awasthiv@rediffmail.com 
 

KRISHNA RAJ2 

 
2Department of Electronics Engineering,  

H.B.T.I., Kanpur-24, U.P., India 
kraj_biet@yahoo.com 

 
 
Abstract 
 
In redundant representations, addition can be carried out in a constant time independent of the word length of 
the operands. Adder forms a fundamental building block in almost majority of VLSI designs. A hybrid adder 
can add an unsigned number to a signed-digit number and hence their efficient performance greatly determines 
the quality of the final output of the concerned circuit. In this paper we designed and compared the speed of 
adders by reducing the carry propagation time with the help of combined effect of improved architectures of 
adders and signed digit representation of number systems. The key idea is to draw out a compromise between 
execution time of fast adding process and area available which is often very limited. In this paper we also tried 
to verify the various algorithms of signed digit and hybrid signed digit adders. 

 
Keywords: Fast adders; Redundant arithmetic; Carry free addition; Hybrid and Signed digit numbers.

 
1. Introduction 

 
Arithmetic operators designed using redundant number system achieves considerable speed improvement 
compared with operators designed using conventional number system. The execution speed of an arithmetic 
operation is directly related to chosen architecture and the architecture and implementation styles are usually 
decided by the number system employed to represent numbers. Addition is widely recognized as a basis of other 
arithmetic operation. The number of add operations required in a constant coefficient multiplication equals one 
less than the number of nonzero bits in the constant coefficient. Early computers using two’s complement 
arithmetic made use of ripple carry adders which forms the basis of fast adders, which had a simple hardware 
design, and their implementation was easy. The adder had a long carry propagation paths extending from the 
least significant bit to the most significant bit position. Its computation time is directly proportional to the word 
length of the operands. Robertson [1] and Avizienis [2] suggested a set of arithmetic rules for redundant signed 
digit numbers. An idea of logical design of the RBSD adders has been proposed by Chow and Robertson [3]. 
Takaji and Yazima [4] proposed a high-speed algorithm suitable for VLSI implementation using RBSD 
numbers. High-speed arithmetic for binary number system has been presented by Macsorley [5] and a fast 
conditional sum addition technique came into feature in 1960 by Sklanski [6-7]. A carry select addition 
technique was presented [8] by O. J. Bedrij. Oklobdzija, Zeydel [9] proposed a Logical Effort (LE) based 
analysis for quick exploration of the energy-delay space for comparing the performance of high-performance 
adders. A RIC ((Re-computing the Inverse Carry-in) fast adder [10] has been proposed which is a very good 
option for designing a high performance and a moderate cost hardware.  

High speed adders can be designed using the binary look ahead (which is popularly known as carry look ahead) 
and carry select adders. This technique reduces the carry propagation time by using an associative operator to 
compute the carry in a binary fashion and using the intermediate carries to generate the sum bits. On the other 
hand, the carry select addition scheme reduces the computation time by pre-computing some positions of the 
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results for all possible carry bit values (i.e. 1 & 0) and using the carry from the previous bit position (after it 
becomes available ) to choose the proper result [11]. In recent years carry free arithmetic operations (such as 
multiplication, division, square root etc.) employing redundant number systems [12] have received considerable 
attention. These redundant arithmetic operations employ a signed digit representation where each digit of a 
number can be positive or negative. The use of a redundant number systems leads to carry free addition, where 
the carry propagates only through two or three stages, independent of the word length. 
 
In this paper we discuss the efforts to increase the speed of computing under two heads :- (a) choice of logic 
design style (arrangement of gates) (b) Number system representation which introduces hybrid number 
representation which is capable of bounding the maximum length of carry propagation chains during addition to 
any desired value between 1 and the entire word length.  
 
2. Review of Fast Adders 
 
A fast and energy-efficient adder is essential for a high-performance processor. Ripple Carry adder is the first 
and the most fundamental adder that is capable of performing binary number additions. 
 
 2.1 Ripple Carry Adder (RCA) 
 
A ripple carry adder is a simple adder consisting of several full adders connected in series so that the carry 
propagates through every full adder before the addition is complete. Hence they are slowest as the final carry 
depends upon the intermediate carry propagation. The sum and carry are calculated in this adder according to 
the following equations- 
 ܵ = ݖ′ݕݔ ′ + ݔ ݖݕ′ ′ + ݖݕݔ + ݔ ܥ ݖ′ݕ′ = ݖ′ݕݔ + ݔ ݖݕ′ +  ݕݔ

Example: 
 
     1 0 1 1      Addend 
  + 1 1 1 0      Augend 
  1 1 0 0 1      Final sum 
 
Carry  
1. x=1, y=0, z=0,      ݏ଴ = 1, ܿ଴ = 0 
2. x=1, y=1, z=0,     	ݏଵ = 0, ܿଵ = 1 
3. x=0, y=1, z=1,      ݏଶ = 0, ܿଶ = 1 
4. x=1, y=1, z=1,      ݏଷ = 1, ܿଷ = 1  

 
Long circuit delay due to many gates in carry path from the LSB to MSB is the major disadvantage of Ripple 
Carry Adder. [6] 

 
 
                    

 
                                                                              
                                                                         

 
Figure 1: Ripple Carry Adder (RCA) 

 
 
2.2 Carry Look Ahead (CLA) Adder 
 
Weinberger and Smith proposed this scheme in 1958[11]. It uses look ahead carry technique rather than carry 
rippling technique to speed up the carry propagation. Carry look ahead depends upon two things- 
 
(1)  Calculating for each digit position whether that position is going to propagate a carry if one comes in 
 from the right. 
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(2)  Combining these calculated values so as to be able to deduce quickly whether, for each group of digits, 
 that group is going to propagate a carry that comes in from the right.  
 
Supposing that groups of four digits are chosen, then all 1- bit adders calculate their results. Simultaneously, the 
look ahead units perform their calculations. Suppose that a carry arises in particular group within at most 3 gate 
delays that carry will emerge at the left hand end of the group and start propagating through the group to its left. 
If that carry is going to propagate all the way through next group, the look ahead unit will already have deduced 
this. The net effect is that the carries start by propagating slowly through each 4-bit group but then moves 4 
times as fast, leaping from one look ahead carry unit to the next. Finally, within each group that receives a carry 
the carry propagates slowly within the digits in that group [7]. 

 
2.3 Carry Select Adder (CSA) 
 

Sklansky proposed the conditional sum addition in 1960. Carry select adder scheme divides adders into blocks 
of ripple carry adder  each with two replicas, one replica evaluates with carry- in of 0, the other one with carry- 
in of 1.In this scheme the carry out is from less significant block which then conditionally selects the output of 
succeeding blocks [7]. 
 
 

 
                     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: 4-bit Carry Select Adder 
  
 
2.4 Ling Adder 
 
Adder proposed by Ling is an improved version of conventional carry-look ahead adder. This approach is faster 
and less expensive. It replaces the conventional propagate operator from a XOR with an OR gate which results 
in a much cheaper operation. Ling proposed that instead of having a single signal at each bit position for 
encoding to be spread into two signals, relaxing the carry computation [13]. 

 
2.5 Carry Skip Adder 
 
Carry skip scheme is proposed by Kilburnet [14] to accelerate the carry propagation. The skip adder provides a 
compromise between a ripple carry adder and a CLA adder. The carry skip adder divides the words to be added 
into blocks and ripple carry adder is used to produce the sum bit and carry. 
 
The carry of the first block is generated with two gate delays per block. The second block waits until the first 
ripple carry block generates a carry. Although the modified carry skip adder uses a few extra gates because of 
the CLA logic, it operates with small gate delay. [10] 
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3. Number System Representations 
 

In computing signed digit number representation is required to encode negative numbers in binary number 
systems. In mathematics, negative numbers in any base are represented by prefixing them with a – sign. 
However, in computer hardware, numbers are represented in binary only without extra symbols, requiring a 
method of encoding the minus sign. The signed digit number representation makes it possible to perform 
addition without carry propagation chains that are used to speed up arithmetic operations.  
 
3.1 Redundant Signed Digit- Carry-Free Addition Algorithm 
 
A symmetrical signed digit (SD) number can assume the following values i.e. [ −α,....,−1,0,1,....,α]. Where the 
maximum value of α must be within the following range: [(r – 1)/2] ≤ α ≤ r – 1. In order to yield minimum 
redundancy, one can choose the maximum magnitude α = [r/2]. If r = 2, then number representation is known as 
Redundant Binary Signed Digit (RBSD) number system. 
 
A digit set need not be the standard. Radix-r, a digit set [–k, μ], having the condition k + μ + 1≥ r may be 
converted to a radix-r digit set[ߙ, ߙ for ,[ߚ + ߚ + 1 ≥ ߜ of the number system is defined as ߜ The redundancy .ݎ = ߙ + ߚ + 1 −  .ݎ
 
In the binary signed digit number system, each digit can assume any one of three values {-1, 0, 1}[11].  As a 
result redundancy is introduced in a system i.e. a number can be represented in more than one way. Due to the 
presence of redundancy one can perform carry-propagation free addition and hence parallel addition of two 
redundant numbers can be performed in a constant time independent of the word length of operands.  
 
Example: 
 

      1  0  1  -  (5) 
+    1  1  0  - (6) 
   1  0  1  1 - (11) 
          (Carry generated) 
 

For 4-bit redundant representation of above example, then 6 can be written as = 1 0 1ത 0 = 1x2ଷ+1തx2 =  8-2 = 6 
  

     0  1  0  1 
 +  1  0 	1		തതതത0 
     1  1			1ത  1 -   (11) 

 
Thus no carry propagation was required. The above representation is possible using Binary Signed Arithmetic, 
for radix 2 & for more general case Signed number representation for radix greater than or equal to 2. 
 
3.2  Signed Binary Digit (SBD) Arithmetic 

 
Signed–digit (SD) number representation makes it possible to perform addition with carry propagation chains 
that are limited to a single digit position, and has been used to speed up arithmetic operations. This redundancy 
can be exploited to limit the length of carry propagation chains to only one digit position, making it possible to 
add two numbers in fixed time, irrespective of the word length. 
 
This section of program given below shows the algorithm for Binary Signed digit number (BSD) addition. The 
tabular representation of this algorithm is taken from [11].  The above algorithm can be clearly understood with 
the help of following example: 
  							1ഥ	 0 1 1ത  (-7)    Addend 

       1 1ത 1ത 0       (2)    Augend 
       0 1 0 1ത               Intermediate sum 
   0 1ത  0 0 0               Intermediate carry 
   0 1ത 1 0 1ത       (-5)    Final sum 
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3.3   Algorithm of Signed Digit Number Representation 
 

For a given radix r, each digit mi in an sign digit number system is typically in the range, 
ߙ−  ≤ ݉௜ ≤ ݎൣ					݁ݎℎ݁ݓ			,	ߙ+ − భమ൧ ≤ ߙ ≤ ݎ − 1      (1) 

 
In this system a “carry free addition” can be done, which means that carry propagation is limited to a single digit 
position i.e. the carry propagation length is fixed irrespective of the word length. The addition here is done in 
two steps. In the first step, an intermediate sum ݏ௜ and a carry ܿ௜ is generated, based on the operand digits mi and ݊௜at each digit position i this is done in parallel for all digit passions. In the second step, the summation ݌௜ ௜ݏ= + ܿ௜ିଵ is carried out to produce the final sum digit pi   the most important fact is that it is always possible to 
select the intermediate sum ݏ௜ and carry ܿ௜ିଵ	such that the summation in the second step does not generate a 
carry. If the selected value of b in the equation 1 satisfies the condition: 
ݎൣ   + భమ൧ ≤ ߙ ≤ ݎ − 1     (2) 
 
Then the intermediate sum	ݏ௜   and	ܿ௜   depend only on the input operands i.e. on mi and ݊௜.The interim sum is  
௜ݏ  = ݉௜ + ݊௜ −  ௜      (3)ܿݎ
 

                                         1             if			݉௜ + ݊௜ ≤ +ܾ                             

   where        ܿ௜ =                -1             if   ݉௜ + ݊௜ ≤ −ܾ 

0 if  	݉௜ + ݊௜ < ܾ 	
It is observed that for the most commonly used binary number system (r=2) condition 2 cannot be satisfied. 
Carry free addition according to the rules in 3 therefore cannot be performed with binary operands but, by 
observing the input operands in position  ݅ − 1 together with the operands in position i, it is possible to select a 
carry ܿ௜ and an interim sum si is made depend on two digit positions i.e. i,i-1, then condition 2 can be relaxed 
and a=r-1/2 can also be used to achieve carry free addition. 
 
Let ݅ߙ = ݉݅ + ௜ିଵߙ & ݅݊ = ݉௜ିଵ + ݊௜ିଵ denote the sums of the input digits at the two positions respectively. 
Given in table, the rules for generating the intermediate sum ݏ௜ & carryܿ௜. In the table, the symbol X indicates a 
don’t care i.e. the value of αi-1 doesn’t matter. The table given below is valid for only Even radix, i.e. ݎ = 2ܽ. 
 
Example:  For radix 6 
 
            1ത 0 3ത2	ഥ        (- 48)     Addend 

      +2ത 3 2 1ത       (- 19)     Augend 

         3ത 1 2 2                   Intermediate sum 

      0 0 0 1ത 0                  Intermediate carry 

      0 3ത 1 1 2      (- 67)      Final sum 

 
3.4 Hybrid Signed Digit (HSD) Number System  

 
In this number system, instead of insisting that every digit be a signed digit, we let some of the digits to be 
signed and leave the others unsigned. For example, every alternate or every third or fourth digit can be signed; 
all the remaining ones are unsigned. We refer to this representation as a Hybrid Signed-Digit (HSD) 
representation. In this representation we can limit the maximum length of carry propagation chains to any 
desired value. In particular, maximum length of a carry propagation chain equals (d + 1), where d is the longest 
distance between neighbouring signed digits. 
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Addition in such a representation requires the carry in between all digit positions (signed or unsigned) to assume 
any value in the set {-1, 0, 1} as in the SD system. The Hybrid Signed Digit (HSD) number system has 
maximum length of a carry propagation chain limited to the (longest) distance between adjacent signed digits. 
The multipliers in the digital filters are realized with shifters, adders and subtractors. The use of HSD expression 
can reduce the number of adders and subtractors with high computational speed. To multiply with HSD number 
only shift and add operations are required. 

Table 1: Rules for selecting carry ܿ௜ and intermediate sum ݏ௜ based on ߙ௜ = ݉௜ + ݊௜for radix ݎ = 2ܾ 

 
Example:  For radix 2 
   

      1ത	1 0 1ത 1    (-9)   Addend 
      0 1 0 1ത 1ത    (5)    Augend 

         1ത 0 0 0 0             Intermediate sum 
      0 1 0 1ത 0 0             Intermediate carry 

  0 0 0 1ത 0 0    (-4)      Final sum 
 

4. Result & Discussion 
 

The speed up in addition time in the SD number does not come without cost, as more bits are needed to 
represent a binary signed digit. Also, the basic adder cell that adds two signed digits and an input carry to 
produce a signed digit and a carry is more complex than a full adder for unsigned digits. Thus more area is 
traded off for the constant addition time. In the SD number system more bits, switching devices & routing are 
required per digit. In return, the carry propagation is limited to a single digit position. The performnace of 
algorithm can also be described by its efficiency and that is given by- 

 
Efficiency ሺߟሻ = ௡[ఘ.௟௢௚మீ] 

 
Where ߩ=Total addition time; ݊= No. Of bits to be added;  ܩ= Gate count; Δ= Delay of NAND/NOR gate  
 

Table 2: Efficiency of Different Addition Algorithms 
 

No. of Bits RCA (Binary) CCA CSA RBSD 
2 0.12 0.118 0.115 0.1 
4 0.13 0.15 0.15 0.3 
8 0.145 0.25 0.25 0.9 

16 0.17 0.31 0.31 1.4 
32 0.19 0.33 0.81 1.6 
64 0.21 0.37 0.98 1.95 
128 0.23 0.42 1.25 3.7 
256 0.27 0.64 2.01 6.5 
512 0.28 0.79 2.54 8.6 

1024 0.3 0.81 2.89 11.1 

௜ߙ ࢏࢙ ࢏ࢉ ૚ି࢏ࢻ ࢏ࢻ = −2ܾ X -1 0 −2ܾ < ௜ߙ < −ܾ X -1 ߙ௜ + ௜ߙ ݎ = ௜ିଵߙ ܾ− ≤ −ܾ -1 b ߙ௜ିଵ > −ܾ 0 -b −ܾ < ௜ߙ < ܾ X 0 ߙ௜ ߙ௜ = ௜ିଵߙ		 ܾ < ܾ 0 b ߙ௜ିଵ ≥ ܾ 1 -b ܾ < ௜ߙ < 2ܾ X 1 ߙ௜ − ௜ߙ ݎ = 2ܾ X 1 0 
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Similarly the comparison of the Execution time of Hybrid signed digit (HSD) adder algorithm with the 
algorithm of Ripple carry adder (RCA), Redundant Binary signed digit (RBSD) adder, signed digit (SD) adder 
is described in table 3. It is clear that the Execution speed of Hybrid signed digit (HSD) adder algorithm 
increases as the word length of operand increases it is so because it provides the carry- propagation free 
addition. 
 

Table 3: Execution Time of Different Addition Algorithms 
 
No. of Bits RCA (Binary) RBSD SD HSD 

 2 1.026454 0.991452 0.990129 0.961259 

4 1.022589 0.988947 0.983792 0.954266 

8 1.014381 0.976212 0.97508 0.947488 

16 1.005479 0.973142 0.972182 0.922707 

32 1.002994 0.970945 0.970019 0.893785 

64 1.000071 0.96166 0.95827 0.881939 

128 0.991526 0.943726 0.938739 0.872127 

256 0.972539 0.924521 0.915266 0.861925 

512 0.954367 0.901291 0.899257 0.855027 

1024 0.904369 0.891793 0.878529 0.837102 

 
In the conventional number systems on the other hand, fewer bits switches & routing are needed per digit, but 
the carry propagates across the entire word length. Hybrid number system offers an optimization where the 
maximum carry propagation length can be set to any desired value between one & the full word length. The area 
required decreases as the length of the carry propagation chain increases.  
 
 In Hybrid number representation, it is not necessary that every digit be a signed digit, we can let some of the 
digits to be signed and leave the others unsigned. For example, every alternate or every third or fourth digit can 
be signed, rest three remaining ones can be unsigned. 
 

  
 

Figure 3(a): Comparison of  Execution Time  of different Algorithm 
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Figure 3(b): Comparison of Efficiency of different Addition Algorithms 

 
5. Conclusion 

 
Hybrid numbers has simply an added advantage over signed numbers that, here we can limit the maximum 
length of carry propagation chains to any desired value but with the limitation for radix. Through examples and 
MATLAB programming we conclude that algorithm for signed digit numbers is more flexible, where it is a 
generalized form & very well includes case of hybrid numbers. The added feature of our this paper is that, we 
have tried to graphically compare the Execution Times of each program with the help of MATLAB and deduced 
that representation in Hybrid Number System is more faster i.e. numerical value of execution times after 
running the respective programs comes out to be minimum for Hybrid Number Representation.  
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Appendix: 

 
 

Ripple Carry Adder (RCA)  Algorithm 
 

 
Signed Binary Digit (SBD) Arithmetic Algorithm 

for any radix 
 
for i=(n-1):-1:1 

    s(n)=0; 
    c(n)=0; 
    p(i)=x(i)+y(i)+c(i+1) 
    if p(i)<2 
        s(i)=p(i); 
        c(i)=0; 
    end 
    if p(i)==2 
        s(i)=0; 
        c(i)=1; 
    end 
    if p(i)==3 
        s(i)=1; 
        c(i)=1; 
    end 

end 
 

 
for i=(n-1):-1:1 
    s(n)=0; c(n)=0; 
    if (x(i)+y(i))>=a 
        c(i)=1; 
        s(i)=x(i)+y(i)-r ; 
    end 
    if (x(i)+y(i))<=-a 
        c(i)=-1; 
        s(i)=x(i)+y(i)+r ; 
    end 
    if abs(x(i)+y(i))<a 
        c(i)=0; 
        s(i)=x(i)+y(i) ; 
    end 
end 

 

 
Signed Binary Digit (SBD) Algorithm for Radix 2 

 

 
Hybrid Signed Binary Digit (SBD) Arithmetic 

Algorithm 
 
for i=(n-1):-1:1 
    s(n)=0; c(n)=0; 
    if m(i) == -2 
        s(i) = 0; 
        c(i) = -1; 
    end 
    if m(i) == -1 
        if (x(i+1)<0)||(y(i+1)<0) 
            s(i) =1; 
            c(i) = -1; 
        end 
        if (x(i+1)>=0)&&(y(i+1)>=0) 
            s(i) = -1; 
            c(i) = 0; 
        end 
    end 
     if m(i) == 1 
        if (x(i+1)<0)||(y(i+1)<0) 
            s(i) = 1; 
            c(i) = 0; 
        end 
        if (x(i+1)>=0)&&(y(i+1)>=0) 
            s(i) = -1; 
            c(i) = 1; 
        end 
    end  
    if m(i) == 2 
        s(i) = 0; 

 
for i = (n-1):-1:1 
   s(n) = 0; c(n) = 0; 
   if m(i) == -2 
       s(i) = 0; 
       c(i) = -1; 
   end 
   if m(i) == -1 
       if ((x(i+1) == 0) && (y(i+1) == 0)) 
           s(i) = 1; 
           c(i) = -1; 
       end 
       if (x(i+1) ~= 0)||(y(i+1) ~= 0) 
           s(i) = -1; 
           c(i) = 0; 
       end 
   end 
   if m(i) == 0 
      s(i) = 0; 
      c(i) = 0; 
   end 
   if m(i) == 1 
      if ((x(i+1) == 0) && (y(i+1) == 0)) 
           s(i) = 1; 
           c(i) = 0; 
       end 
     end  
   if m(i) == 2 
      s(i) = 0; 
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        c(i) = 1; 
    end 
end 
for i = n:-1:2 
    z(i) = s(i-1) + c(i); 
end 

 

      c(i) = 1; 
   end 
end 
for i = n:-1:2 
    z(i) = s(i-1) + c(i); 
end 
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