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Abstract : 
Turbo codes are one of the most powerful error correcting codes. What makes these codes so powerful is 
the use of the so-called iterative decoding or turbo decoding.  An iterative decoding process is an iterative 
learning process for a complex system where the objective is to provide a good suboptimal estimate of a 
desired signal. Iterative decoding is used when the true optimal estimation is impossible due to prohibitive 
computational complexities. This paper extends the mathematical derivation of the original MAP 
algorithm and shows log likelihood values can be computed differently. The proposed algorithm results in 
savings in the required memory size and leads to a power efficient implementation of MAP algorithm in 
channel coding. 
 
 Key words: Turbo codes, Iterative decoding, Map algorithm, Memory savings 
 

I. INTRODUCTION 
 

Recently, the digital communications has been further strengthened by important developments in at least 
two specific areas.  

One of the area is digital signal decoding and detection. When applied to turbo codes and low-density parity 
– check (LDPC) codes, iterative algorithms are capable of a approaching Shannon’s channel capacity bound 
within a very small margin [1], [2].  

This paper is concerned with dynamic analysis of iterative decoding for turbo codes. Our aim is to show 
how to analyze an iterative decoding process using a system theory based approach more specifically.  

 

II. TURBO ENCODING 
 

Ever since Shannon published his famous channel coding theorem [14] in 1948, the advances in the field of 
communications theory can in one way be viewed as a painstaking pursue for discovering practical coding and 
decoding algorithms which enable us to approach the Shannon capacity limit.   

A turbo encoder is illustrated in Figure 1. It is a binary code, consisting of two Recursive systematic 
encoders G1(z) and G2(z), an interleaver. The two constituent encoders are typically the same and will be 
denoted by G(z). The two constituent encoders share the same systematic sequence xs.   
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Figure 1 

 

III.  MAP DECODING 
    

The turbo decoding algorithm is depicted in Figure 2. The input data to the turbo decoder are ys, yp1 and yp2, 
which are the noisy version of xs  xp1 and xp2 coming from demodulation.  

 
 
 
 
 
 
 
 
 
 

 

 

Figure 2 

Using this method the likelihoods of different bits are computed and passed to the second decoder. The 
second decoder computes the likelihood ratios and passed the first decoder. The process is repeated until the 
likelihoods suggest high probability of correct decoding for each bit. Le12 and Le21 represent the information 
passed between the two decoders 
 
 
IV. MODIFIED MAP ALGORITHM 
 

The Map decoding algorithm is a recursive technique that computes the Log-Likelihood Ratio (LLR) of 
each bit based on the entire observed data block of length N.  
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Where Ys.k is the k-th element of Ys, and Y1p.k   is similarly defined . A posteriori probability (APP) ratio 
of u, as defined below; 
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                     Where uk is the k-th symbol of u.  
The log-likelihood ratio (LLR) is given as  
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Denoting the set of all possible states by S and the state at the k-th symbol by Sk. Now using the Bayes rule, 
we have 
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It is clear from above that P(y) can be cancelled and we only need to find a way for computing P(Sk-1 = s1, 
Sk=s, y), or P(s1,s,y) for short. By breaking Y into ( y 

k-1 , yk , y k+1) and applying the Bayes rule again.  
 

 We can write 

)().,().(),,( 11
1

1 sssysyssp kkk       (4) 

),()( 1
11

1
1

1   kkk yssps                    (5) 
1

1
1 |,(),( ssysspss kkkk               (6) 

)|()( 1 ssyps kk
n

k           (7) 

                                                                        
These terms can be computed recursively using the Bayes rule again. More precisely, 
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With the initial conditions 
0(s = 0) = 1; 

0 (s  0) = 0; 

Where s=0 is the known initial state for the code. Similarly, 
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With the terminating conditions 
 n (s = 0) = 1; n (s  0) = 0 

If s=0 is the known terminating state for the code. If the code is not terminated, n(s) is usually set equally. 
 It remains to compute k(s1,s), for which we have 
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Where the values of uk and xpl.k correspond to the transition from s1 to s. The term Pa(uk) is the a priori 
probability of uk which is related to the extrinsic information Le

21 as follows : 
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i.e., the k-th element of Le
21 is the log a priori probability ratio for uk.  

 For example, if the channel is an additive Gaussian white noise (AGWN) channel with noise variance 
2, then ys.k and yp1.k are independent and we have 
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With a constant C which does not affect L(uk). If we want to produce a hard estimate of u k, we simply take 
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If we want to compute the extrinsic information Le
12 for further iterations, we simply subtract the input extrinsic 

information from L(u k), i.e., 
 

12. 21.( )e e
k kL L uk L              (14) 

                             

V. SIMULATION RESULTS 

For Different cases the Simulation results are : 
The  figures (3, 4, 5 and  6 ) shows BER curves for the amount of data of 500, signal to noise ratio as up to 

4 db, number of iterations are 5 and the interleaver lengths are taken  as 50,100,150 and 200 respectively . Here 
interleaver lengths are only changed . 

 
 

1 1.5 2 2.5 3 3.5 4
10

-5

10
-4

10
-3

10
-2

10
-1

Effect of number of iterations on the performance

Eb/No

B
E

R

iteration 1

iteration 2

iteration 3
iteration 4

iteration 5

 

               Figure 3 
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     Figure 4 
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                Figure 5 
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                Figure 6 

The below figures ( 7, 8, 9 and 10 ) shows BER curves for taking amount of data as 500 bits, signal to noise 
ratio as up to 4 db, the interleaver length is 50 and the  number of iterations are taken as 3,4,5 and 6 respectively.  
Here the number of iterations only changed 
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Figure 7     
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Figure 8 
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Figure 9 
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                                                     Figure 10 

 
 
 
 
 

Prof M. Srinivasa Rao et al. / International Journal of Engineering Science and Technology (IJEST)

ISSN : 0975-5462 Vol. 3 No. 8 August 2011 6614



   

VI. CONCLUSION 
 

From the simulation results we can notice two things. 
1. The bit error probability decreases as the iterations goes up. This means as the iterations increase the 
reliability of the decisions taken increases. 

2. The interleaver length also affects the performance. As the interleaver length increases the bit error 
probability decreases. 

As BCJR algorithm is very complex, we are trying to modify the algorithm to save memory and to reduce 
complexity. The basic idea is as follows. 

 
This paper extends the mathematical derivation of the original MAP algorithm and shows that the log 

likelihood values can be computed using only partial state metric values. By processing N stages in a trellis 
concurrently, the proposed algorithm results in savings in the required memory size and leads to a power 
efficient implementation of the MAP algorithm in channel decoding.  
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