
Microprocessors 
 

Early computer science pioneers such as Alan Turing and John Von Neumann 

postulated that for a computing device to be really useful, it not only had to be able 

to generate specific outputs as dictated by programmed instructions, but it also had 

to be able to write data to memory, and be able to act on that data later. Both the 

program steps and the processed data were to reside in a common memory "pool," 

thus giving way to the label of the stored-program computer. Turing's theoretical 

machine utilized a sequential-access tape, which would store data for a control 

circuit to read, the control circuit re-writing data to the tape and/or moving the 

tape to a new position to read more data. Modern computers use random-access 

memory devices instead of sequential-access tapes to accomplish essentially the 

same thing, except with greater capability. 

 

A helpful illustration is that of early automatic machine tool control technology. 

Called open-loop, or sometimes just NC (numerical control), these control systems 

would direct the motion of a machine tool such as a lathe or a mill by following 

instructions programmed as holes in paper tape. The tape would be run one 

direction through a "read" mechanism, and the machine would blindly follow the 

instructions on the tape without regard to any other conditions. While these devices 

eliminated the burden of having to have a human machinist direct every motion of 

the machine tool, it was limited in usefulness. Because the machine was blind to 

the real world, only following the instructions written on the tape, it could not 

compensate for changing conditions such as expansion of the metal or wear of the 

mechanisms. Also, the tape programmer had to be acutely aware of the sequence 

of previous instructions in the machine's program to avoid troublesome 

circumstances (such as telling the machine tool to move the drill bit laterally while 

it is still inserted into a hole in the work), since the device had no memory other 

than the tape itself, which was read-only. Upgrading from a simple tape reader to a 

Finite State control design gave the device a sort of memory that could be used to 

keep track of what it had already done (through feedback of some of the data bits 

to the address bits), so at least the programmer could decide to have the circuit 

remember "states" that the machine tool could be in (such as "coolant on," or tool 

position). However, there was still room for improvement. 

The ultimate approach is to have the program give instructions which would include 

the writing of new data to a read/write (RAM) memory, which the program could 

easily recall and process. This way, the control system could record what it had 



done, and any sensor-detectable process changes, much in the same way that a 

human machinist might jot down notes or measurements on a scratch-pad for 

future reference in his or her work. This is what is referred to as CNC, or Closed-

loop Numerical Control. 

Engineers and computer scientists looked forward to the possibility of building 

digital devices that could modify their own programming, much the same as the 

human brain adapts the strength of inter-neural connections depending on 

environmental experiences (that is why memory retention improves with repeated 

study, and behavior is modified through consequential feedback). Only if the 

computer's program were stored in the same writable memory "pool" as the data 

would this be practical. It is interesting to note that the notion of a self-modifying 

program is still considered to be on the cutting edge of computer science. Most 

computer programming relies on rather fixed sequences of instructions, with a 

separate field of data being the only information that gets altered. 

To facilitate the stored-program approach, we require a device that is much more 

complex than the simple FSM, although many of the same principles apply. First, 

we need read/write memory that can be easily accessed: this is easy enough to do. 

Static or dynamic RAM chips do the job well, and are inexpensive. Secondly, we 

need some form of logic to process the data stored in memory. Because standard 

and Boolean arithmetic functions are so useful, we can use an Arithmetic Logic Unit 

(ALU) such as the look-up table ROM example explored earlier. Finally, we need a 

device that controls how and where data flows between the memory, the ALU, and 

the outside world. This so-called Control Unit is the most mysterious piece of the 

puzzle yet, being comprised of tri-state buffers (to direct data to and from buses) 

and decoding logic which interprets certain binary codes as instructions to carry 

out. Sample instructions might be something like: "add the number stored at 

memory address 0010 with the number stored at memory address 1101," or, 

"determine the parity of the data in memory address 0111." The choice of which 

binary codes represent which instructions for the Control Unit to decode is largely 

arbitrary, just as the choice of which binary codes to use in representing the letters 

of the alphabet in the ASCII standard was largely arbitrary. ASCII, however, is now 

an internationally recognized standard, whereas control unit instruction codes are 

almost always manufacturer-specific. 

 

 

 



Putting these components together (read/write memory, ALU, and control unit) 

results in a digital device that is typically called a processor. If minimal memory is 

used, and all the necessary components are contained on a single integrated circuit, 

it is called a microprocessor. When combined with the necessary bus-control 

support circuitry, it is known as a Central Processing Unit, or CPU. 

CPU operation is summed up in the so-called fetch/execute cycle. Fetch means to 

read an instruction from memory for the Control Unit to decode. A small binary 

counter in the CPU (known as the program counter or instruction pointer) holds the 

address value where the next instruction is stored in main memory. The Control 

Unit sends this binary address value to the main memory's address lines, and the 

memory's data output is read by the Control Unit to send to another holding 

register. If the fetched instruction requires reading more data from memory (for 

example, in adding two numbers together, we have to read both the numbers that 

are to be added from main memory or from some other source), the Control Unit 

appropriately addresses the location of the requested data and directs the data 

output to ALU registers. Next, the Control Unit would execute the instruction by 

signaling the ALU to do whatever was requested with the two numbers, and direct 

the result to another register called theaccumulator. The instruction has now been 

"fetched" and "executed," so the Control Unit now increments the program counter 

to step the next instruction, and the cycle repeats itself. 
 
 
 
        Microprocessor (CPU) 

 

-------------------------------------- 

|       ** Program counter **        | 

|  (increments address value sent to | 

|  external memory chip(s) to fetch  |==========> Address bus 

|  the next instruction)             |          (to RAM memory) 

-------------------------------------- 

|        ** Control Unit **          |<=========> Control Bus 

|  (decodes instructions read from   | (to all devices sharing 

|  program in memory, enables flow   | address and/or data busses; 

|  of data to and from ALU, internal | arbitrates all bus communi-  

|  registers, and external devices)  | cations) 

--------------------------------------  

| ** Arithmetic Logic Unit (ALU) **  | 

|    (performs all mathematical      | 

|     calculations and Boolean       | 

|     functions)                     | 

-------------------------------------- 

|          ** Registers **           | 

|    (small read/write memories for  |<=========> Data Bus 

|     holding instruction codes,     | (from RAM memory and other 

|     error codes, ALU data, etc;    |  external devices) 



|     includes the "accumulator")    | 

-------------------------------------- 

 
 
 

As one might guess, carrying out even simple instructions is a tedious process. 

Several steps are necessary for the Control Unit to complete the simplest of 

mathematical procedures. This is especially true for arithmetic procedures such as 

exponents, which involve repeated executions ("iterations") of simpler functions. 

Just imagine the sheer quantity of steps necessary within the CPU to update the 

bits of information for the graphic display on a flight simulator game! The only thing 

which makes such a tedious process practical is the fact that microprocessor circuits 

are able to repeat the fetch/execute cycle with great speed. 

In some microprocessor designs, there are minimal programs stored within a 

special ROM memory internal to the device (called microcode) which handle all the 

sub-steps necessary to carry out more complex math operations. This way, only a 

single instruction has to be read from the program RAM to do the task, and the 

programmer doesn't have to deal with trying to tell the microprocessor how to do 

every minute step. In essence, its a processor inside of a processor; a program 

running inside of a program. 
 

 

 

Source: http://www.allaboutcircuits.com/vol_4/chpt_16/4.html 


