
Microprocessors

Early computer science pioneers such as Alan Turing and John Von Neumann

postulated that for a computing device to be really useful, it not only had to be able

to generate specific outputs as dictated by programmed instructions, but it also had

to be able to write data to memory, and be able to act on that data later. Both the

program steps and the processed data were to reside in a common memory "pool,"

thus giving way to the label of the stored-program computer. Turing's theoretical

machine utilized a sequential-access tape, which would store data for a control

circuit to read, the control circuit re-writing data to the tape and/or moving the

tape to a new position to read more data. Modern computers use random-access

memory devices instead of sequential-access tapes to accomplish essentially the

same thing, except with greater capability.

A helpful illustration is that of early automatic machine tool control technology.

Called open-loop, or sometimes just NC (numerical control), these control systems

would direct the motion of a machine tool such as a lathe or a mill by following

instructions programmed as holes in paper tape. The tape would be run one

direction through a "read" mechanism, and the machine would blindly follow the

instructions on the tape without regard to any other conditions. While these devices

eliminated the burden of having to have a human machinist direct every motion of

the machine tool, it was limited in usefulness. Because the machine was blind to

the real world, only following the instructions written on the tape, it could not

compensate for changing conditions such as expansion of the metal or wear of the

mechanisms. Also, the tape programmer had to be acutely aware of the sequence

of previous instructions in the machine's program to avoid troublesome

circumstances (such as telling the machine tool to move the drill bit laterally while

it is still inserted into a hole in the work), since the device had no memory other

than the tape itself, which was read-only. Upgrading from a simple tape reader to a

Finite State control design gave the device a sort of memory that could be used to

keep track of what it had already done (through feedback of some of the data bits

to the address bits), so at least the programmer could decide to have the circuit

remember "states" that the machine tool could be in (such as "coolant on," or tool

position). However, there was still room for improvement.

The ultimate approach is to have the program give instructions which would include

the writing of new data to a read/write (RAM) memory, which the program could

easily recall and process. This way, the control system could record what it had

done, and any sensor-detectable process changes, much in the same way that a

human machinist might jot down notes or measurements on a scratch-pad for

future reference in his or her work. This is what is referred to as CNC, or Closed-

loop Numerical Control.

Engineers and computer scientists looked forward to the possibility of building

digital devices that could modify their own programming, much the same as the

human brain adapts the strength of inter-neural connections depending on

environmental experiences (that is why memory retention improves with repeated

study, and behavior is modified through consequential feedback). Only if the

computer's program were stored in the same writable memory "pool" as the data

would this be practical. It is interesting to note that the notion of a self-modifying

program is still considered to be on the cutting edge of computer science. Most

computer programming relies on rather fixed sequences of instructions, with a

separate field of data being the only information that gets altered.

To facilitate the stored-program approach, we require a device that is much more

complex than the simple FSM, although many of the same principles apply. First,

we need read/write memory that can be easily accessed: this is easy enough to do.

Static or dynamic RAM chips do the job well, and are inexpensive. Secondly, we

need some form of logic to process the data stored in memory. Because standard

and Boolean arithmetic functions are so useful, we can use an Arithmetic Logic Unit

(ALU) such as the look-up table ROM example explored earlier. Finally, we need a

device that controls how and where data flows between the memory, the ALU, and

the outside world. This so-called Control Unit is the most mysterious piece of the

puzzle yet, being comprised of tri-state buffers (to direct data to and from buses)

and decoding logic which interprets certain binary codes as instructions to carry

out. Sample instructions might be something like: "add the number stored at

memory address 0010 with the number stored at memory address 1101," or,

"determine the parity of the data in memory address 0111." The choice of which

binary codes represent which instructions for the Control Unit to decode is largely

arbitrary, just as the choice of which binary codes to use in representing the letters

of the alphabet in the ASCII standard was largely arbitrary. ASCII, however, is now

an internationally recognized standard, whereas control unit instruction codes are

almost always manufacturer-specific.

Putting these components together (read/write memory, ALU, and control unit)

results in a digital device that is typically called a processor. If minimal memory is

used, and all the necessary components are contained on a single integrated circuit,

it is called a microprocessor. When combined with the necessary bus-control

support circuitry, it is known as a Central Processing Unit, or CPU.

CPU operation is summed up in the so-called fetch/execute cycle. Fetch means to

read an instruction from memory for the Control Unit to decode. A small binary

counter in the CPU (known as the program counter or instruction pointer) holds the

address value where the next instruction is stored in main memory. The Control

Unit sends this binary address value to the main memory's address lines, and the

memory's data output is read by the Control Unit to send to another holding

register. If the fetched instruction requires reading more data from memory (for

example, in adding two numbers together, we have to read both the numbers that

are to be added from main memory or from some other source), the Control Unit

appropriately addresses the location of the requested data and directs the data

output to ALU registers. Next, the Control Unit would execute the instruction by

signaling the ALU to do whatever was requested with the two numbers, and direct

the result to another register called theaccumulator. The instruction has now been

"fetched" and "executed," so the Control Unit now increments the program counter

to step the next instruction, and the cycle repeats itself.

 Microprocessor (CPU)

| ** Program counter ** |

| (increments address value sent to |

| external memory chip(s) to fetch |==========> Address bus

| the next instruction) | (to RAM memory)

| ** Control Unit ** |<=========> Control Bus

| (decodes instructions read from | (to all devices sharing

| program in memory, enables flow | address and/or data busses;

| of data to and from ALU, internal | arbitrates all bus communi-

| registers, and external devices) | cations)

| ** Arithmetic Logic Unit (ALU) ** |

| (performs all mathematical |

| calculations and Boolean |

| functions) |

| ** Registers ** |

| (small read/write memories for |<=========> Data Bus

| holding instruction codes, | (from RAM memory and other

| error codes, ALU data, etc; | external devices)

| includes the "accumulator") |

As one might guess, carrying out even simple instructions is a tedious process.

Several steps are necessary for the Control Unit to complete the simplest of

mathematical procedures. This is especially true for arithmetic procedures such as

exponents, which involve repeated executions ("iterations") of simpler functions.

Just imagine the sheer quantity of steps necessary within the CPU to update the

bits of information for the graphic display on a flight simulator game! The only thing

which makes such a tedious process practical is the fact that microprocessor circuits

are able to repeat the fetch/execute cycle with great speed.

In some microprocessor designs, there are minimal programs stored within a

special ROM memory internal to the device (called microcode) which handle all the

sub-steps necessary to carry out more complex math operations. This way, only a

single instruction has to be read from the program RAM to do the task, and the

programmer doesn't have to deal with trying to tell the microprocessor how to do

every minute step. In essence, its a processor inside of a processor; a program

running inside of a program.

Source: http://www.allaboutcircuits.com/vol_4/chpt_16/4.html

