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After reading this lesson, you will learn about 
 Principle of Maximum Likelihood (ML) detection; 
 Likelihood function; 
 Correlation receiver; 
 Vector receiver; 

 
Maximum likelihood (ML) detection:  
We start with the following assumptions: 

• Number of information-bearing signals (symbols), designed after the G-S-O 
approach, is ‘M’ and one of these ‘M’ signals is received from the AWGN 
channel in each time slot of ‘T’-sec. Let the messages be denoted by mi, i = 1, 2, 
…, M. Each message, as discussed in an earlier lesson, may be represented by a 
group of bits, e.g. by a group of ‘m’ bits each such that 2m = M. 

 
• All symbols are equi- probable. This is not a grave assumption since, if the input 

message probabilities are different and known, they can be incorporated following 
Bayesian approach. However, for a bandwidth efficient transmission scheme, as is 
often needed in wireless systems, the source coding operation should be 
emphasized to ensure that all the symbols are independent and equally likely. 
Alternatively, the number of symbols, M, may also be decided appropriately to 
approach this desirable condition.  

 
• AWGN process with a mean = 0 and double-sided psd No/2. Let w(t) denote a 

noise sample function over 0 ≤ t < T. 
 
Let ‘R(t)’ denote the received random process with sample function over a symbol 

duration denoted as r(t),  0 ≤ t ≤ T. Now, a received sample function can be expressed 
in terms of the corresponding transmitted information-bearing symbol, say si(t), and a 
sample function w(t) of the Gaussian noise process simply as: 

 r(t) =  si(t) +  w(t),  0 ≤ t < T       4.19.1 
 

 At the receiver, we do not know which si(t) has been transmitted over the interval 
0 ≤ t < T. So, the job of an efficient receiver is to make ‘best estimate’ of transmitted 
signal [si(t)] upon receiving r(t) and to repeat the same process during all successive 
symbol intervals. This problem can be explained nicely using the concept of ‘signal 
space’, introduced earlier in Lesson #16. Depending on the modulation and transmission 
strategy, the receiver usually has the knowledge about the signal constellation that is in 
use. This also means that the receiver knows all the nominal basis functions used by the 
transmitter. For convenience, we will mostly consider a transmission strategy involving 
two basis functions, φ1 and φ2 (described now as unit vectors) for explanation though 
most of the discussion will hold for any number of basis functions. Fig.4.19.1 shows a 
two-dimensional signal space showing a signal vector is  and a received vector r . Note 

the noise vector .ω  as well. 



Version 2 ECE IIT, Kharagpur 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    Fig. 4. 19.1 Signal space showing a signal vector is  and a received vector r  
 

The job of the receiver can now be formally restated as: Given received signal 
vectors r , find estimates im  for all valid transmit symbols ‘mi-s’ once in each symbol 
duration in a way that would minimize the probability of erroneous decision of a symbol 
on an average (continuous transmission of symbols is implicit). 

 
The principle of Maximum Likelihood (ML) detection provides a general solution 

to this problem and leads naturally to the structure of an optimum receiver. When the 
receiver takes a decision that imm     = , the associated probability of symbol decision error 
may be expressed as: ( ),iPe m r  = probability of decision on receiving r  that ‘mi’ was 

transmitted = Pr (mi not sent r ) = 1 – Pr (mi sent r ). 

 
In the above, Pr (mi not sent r ) denotes the probability that ‘mi’ was not transmitted 

while r  is received. So, an optimum decision rule may heuristically be framed as: 
 
Set  imm     =  if Pr (mi sent r ) ≥ Pr (mk sent r ), for all k ≠ i    4.19.2 

 
This decision rule is known as maximum a posteriori probability rule. This rule requires 
the receiver to determine the probability of transmission of a message from the received 
vector. Now, for practical convenience, we invoke Bayes’ rule to obtain an equivalent 
statement of optimum decision rule in terms of a priori probability: 
    
              ( ) ( ) ( ) ( )

ii

1joint probability a priori prob.a posteriori prob.
          of r   of r  given 'm 'of 'm ' given r

i i i

M

r m r r r r r m r mΡ Ρ = Ρ Ρ     4.19.3 
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( )rrΡ          : Joint pdf of r , defined over the entire set of signals { si(t) }; independent of 
any specific message ‘mi ‘ 

( )imrrΡ   :  Probability that a specific r  will be received if the message mi is transmitted; 

known as the a priori probability of r  given mi  
( )imrΡ      : 1

M  

 
From Eq. 4.19.3, we see that determination of maximum a posteriori probability is 
equivalent to determination of maximum a priori probability ( )imrrΡ . This a priori 
probability is also known as the ‘likelihood function’. 
 
So the decision rule can equivalently be stated as:  
   Set  imm     =  if ( )imrrΡ  is maximum for k = i    
 
Usually, ( )r kln p r|m⎡ ⎤

⎣ ⎦ , i.e. natural logarithm of the likelihood function is considered. As 

the likelihood function is non-negative, another equivalent form for the decision rule is: 
   Set  imm     =  if   ln [ ( )imrrΡ ] is maximum for k = i      4.19.4 

 
A ‘Maximum Likelihood Detector’ realizes the above decision rule.Towards this, the 
signal space is divides in M decision regions, Zi ,  i = 1, 2, …, M such that,  

 ( )
ivector r lies inside 'Z 'if,

ln is maximum for k = ir kP r m

⎧
⎪
⎨ ⎡ ⎤⎪ ⎣ ⎦⎩

     4.19.5 

 
Fig. 4.19.2 indicates two decision zones in a two-dimensional signal space. The received 
vector r  lies inside region Zi if ( )r kln p r|m⎡ ⎤

⎣ ⎦  is maximum for k = i.       

 
 
 
 
 
 
        
                 
 
 
 
 
 
 
Fig. 4.19.2 Decision zones in a two-dimensional signal space 
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Now for an AWGN channel, the following statement is equivalent to ML 
decision: 
Received vector r  lies inside decision region Zi 

 if,  ( )
2

1
∑
=

−
N

j

kjj sr   is minimum for k = i       4.19.6 

That is, the decision rule simply is to choose the signal point is  if the received vector r  
is closest to is  in terms of Euclidean distance. So, it appears that Euclidean distances of a 
received vector r  from all the signal points are to be determined for optimum decision-
making. This can, however, be simplified. Note that, on expansion we get, 

 
( )2 2 2

1 1 1 1

2 .
N N N N

j kj j j kj kj
j j j j

r s r r s s
= = = =

− = − +∑ ∑ ∑ ∑
     4.19.7 

 

It is interesting that, the first term on the R.H.S, i.e., 2

1

N

j
j

r
=
∑ is independent of ‘k’ and 

hence need not be computed for our purpose. The second term, ∑
=

N

j
kjj sr

1
.2  is the inner 

product of two vectors. The third term, i.e. 2

1

N

kj
j

s
=
∑  is the energy of the k-th symbol. If the 

modulation format is so chosen that all symbols carry same energy, this term also need 
not be computed. We will see in Module #5 that many popular digital modulation 
schemes such as BPSK, QPSK exhibit this property in a linear time invariant channel. 
 
So, a convenient observation is: the received vector r  lies in decision region iZ  if, 

1

1
2

N

j kj k
j

r s E
=

⎛ ⎞
−⎜ ⎟

⎝ ⎠
∑  is maximum for k = i       

 
That is, a convenient form of the ML decision rule is: 

 Choose imm     =  if 
1

1
2

N

j kj k
j

r s E
=

⎛ ⎞
−⎜ ⎟

⎝ ⎠
∑  is maximum for k = i    4.19.8      

 
A Correlation Receiver, consisting of a Correlation Detector and a Vector Receiver 
implements the M – L decision rule [4.19.8] by, (a) first finding r with a correlation 
detector and then (b) computing the metric in [4.19.8] and taking decision in a vector 
receiver. Fig. 4.19.3 shows the structure of a Correlation Detector for determining the 
received vector r  from the received signal r(t). Fig. 4.19.4 highlights the operation of a 
Vector Receiver. 
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Fig. 4.19.3 The structure of a Correlation Detector for determining the received vector r  
from the received signal r(t) 
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Fig. 4. 19.4  Block schematic diagram for the Vector Receiver 
 
Features of the received vector r  

We will now discuss briefly about the statistical features of the received vector r as 
obtained at the output of the correlation detector [Fig. 4.19.3]. The j-th element of r , 
which is obtained at the output of the j-th correlator once in T second, can be expressed 
as: 

[ ]
0 0

( ) ( ) ( ) ( ) ( )
T T

j j i jr r t t dt s t w t t dt= Φ = + Φ∫ ∫  

    ij js w= +  ;     j=1,2,….., N        4.19.9 
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Here wj is a Gaussian distributed random variable with zero mean and sij is a scalar signal 
component of is . Now, the mean of the correlator out put is, 

j ij j ij ij rjE r E s w E s s m⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + = = =⎣ ⎦ ⎣ ⎦ ⎣ ⎦ , say. We note that the mean of the correlator out 
put is independent of the noise process. However, the variances of the correlator outputs 
are dependent on the strength of accompanying noise: 
 

2

r jjVar r σ⎡ ⎤ =⎣ ⎦     ( )2 2
j ij jE r s E w⎡ ⎤ ⎡ ⎤= − = ⎣ ⎦⎢ ⎥⎣ ⎦

 

      
0 0

( ) ( ) ( ) ( )
T T

j jE w t t dt w u u du
⎡ ⎤

= Φ Φ⎢ ⎥
⎣ ⎦
∫ ∫  

      
0 0

( ) ( ). ( ) ( )
T T

j jE t u w t w u dtdu
⎡ ⎤

= Φ Φ⎢ ⎥
⎣ ⎦
∫ ∫  

Taking the expectation operation inside, we can write 
 

( ) ( )2

0 0

( ) ( ) .
T T

rj j jt u E w t w u dtduσ = Φ Φ ⎡ ⎤⎣ ⎦∫ ∫  

0 0

( ) ( ) ( , )
T T

j j wt u R t u dtdu= Φ Φ∫ ∫        4.19.10 

 
Here, Rw (t-u) is the auto correlation of the noise process. As we have learnt earlier, 
additive white Gaussian noise process is a WSS random process and hence the auto-
correlation function may be expressed as, ( ) ( ),w wR t u R t u= −  and further,  

( ) ( )0

2w
NR t u t uδ− = − , where ‘No’ is the single-sided noise power spectral density in 

Watt/Hz. So, the variance of the correlator output now reduces to: 
2 0

0 0

( ) ( ) ( )
2

T T

rj j j
N t u t u dtduσ δ= Φ Φ −∫ ∫  

20 0

0

( )
2 2

T

j
N Nt dt= Φ =∫         4.19.11 

 
It is interesting to note that the variance of the random signals at the out puts of all 

N correlators are a) same, b) independent of information-bearing signal waveform and c) 
dependent only on the noise psd. 

 
 Now, the likelihood function for si(t), as introduced earlier in Eq.4.19.3 and the 
ML decision rule [4.19.5] , can be expressed in terms of the output of the correlation 
detector. The likelihood function for ‘mi’ = ( )imrrΡ  ( ) ( )( )i ir rf r m f r s t= = , where, 

fr(r|mi) is the conditional pdf of ‘r’ given ‘mi’. 
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In our case, ( ) ( )
1 j

N

i r j ir j
f r m f r m

=
= ∏ ,  i = 1,2,…,M     4.19.12 

where, ( )
jr j if r m  is the pdf of a Gaussian random variable with mean sij & var. = 2

jrσ  = 

0

2
N , i.e., ( )

2

2

( )

2

2

1 .
2

j ij

rj

j

j

r s

r j i

r

f r m e σ

πσ

−
−

=       4.19.13 

Combining Eq. 4.19.12 and 4.19.13, we finally obtain, 
 

( ) ( ) ( )
2

2
0

10

1.exp
NN

i j ijr
j

f r m N r s
N

π −

=

⎡ ⎤
= − −⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ,    i=1,2,……..,M   4.19.14 

This generic expression is of fundamental importance in analyzing error performance of 
digital modulation schemes [Module #5]. 

 
 

Problems 
 

Q4.19.1) Consider a binary transmission scheme where a bit ‘1’ is represented by +1.0 
and a bit ‘0’ is represented by –1.0. Determine the basis function if no carrier 
modulation scheme is used. If the additive noise is a zero mean Gaussian 
process, determine the mean values of r1 and r2 at the output of the correlation 
detector. Further, determine E1 and E2 as per Fig 4.19.4. 
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