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Abstract—Low Density Parity Check (LDPC) codes are 
state-of-art error correcting codes, included in several 
standards for broadcast transmissions. Iterative soft-
decision decoding algorithms for LDPC codes reach 
excellent error correction capability; their performance, 
however, is strongly affected by finite-precision issues in 
the representation of inner variables. Great attention has 
been paid, in recent literature, to the topic of quantization 
for LDPC decoders, but mostly focusing on binary 
modulations and analyzing finite precision effects in a 
disaggregrated manner, i.e., considering separately each 
block of the receiver. Modern telecommunication 
standards, instead, often adopt high order modulation 
schemes, e.g. M-QAM, with the aim to achieve large 
spectral efficiency. This puts additional quantization 
problems, that have been poorly debated in previous 
literature. This paper discusses the choice of suitable 
quantization characteristics for both the decoder 
messages and the received samples in LDPC-coded 
systems using M-QAM schemes. The analysis involves 
also the demapper block, that provides initial likelihood 
values for the decoder, by relating its quantization 
strategy with that of the decoder. A signal label for a 
signal in a 2m-ary modulation scheme is simply the m-bit 
pattern assigned to the signal. A mapping strategy refers 
to the grouping of bits within a codeword, where each m-
bit group is used to select a 2m-ary signal in accordance 
with the signal labels. The most obvious mapping strategy 
is to use each group of m consecutive bits to select a signal. 
. We will call this the consecutive-bit (CB) mapping 
strategy. An alternative strategy is the bit-reliability (BR) 
mapping strategy which will be described below. A new 
demapper version, based on approximate expressions, is 
also presented, that introduces a slight deviation from the 
ideal case but yields a low complexity hardware 
implementation.  

Keywords- Low Density parity Check, Mapping, 
Demapping, Quantization, Quadrature Amplitude 
Modulation. 

 

I. INTRODUCTION 
 
LDPC codes (also known as Gallager codes) have 

recently received much attention from the communications 
industry because of their excellent error-correcting 
performance as well as having a highly parallelizable 
decoding algorithm even though they were developed half 
century ago. In 2003, the LDPC code beat six alternative 
turbo codes to become the error correcting code in the second 
generation standard for satellite transmission of digital 
television (European Telecommunication Standards Institute 
(ETSI)) and has already been proposed for the next 
generation digital terrestrial television standards (Digital 
Video Broadcasting (DVB))[1]. In designing the LDPC code 
the following design properties should be observed in order to 
obtain good code performance; first the code should be long 
enough, as performance improves with the code length. 
Second, few small cycles in the code bipartite graph since too 
many of them will seriously degrade the error-correcting 
performance. Finally, using carefully designed LDPC codes 
with irregular node degree distributions proved to remarkably 
outperform regular ones. 

II. OVERVIEW OF PREVIOUS WORKS 

A.  Convolutional Coding 
The information bits are input into shift registers and the 

output encoded bits are obtained by modulo-2 addition of the 
input information bits and the contents of the shift registers. 
The connections to the modulo-2 adders were developed 
heuristically with no algebraic or combinatorial foundation. 
The code rate r for a convolutional code is defined as r =k/n. 
The constraint length K for a convolutional code is defined as 
K=m+ 1, where m is the maximum number of stages 
(memory size) in any shift register. The shift registers store 
the state information of the convolutional encoder and the 
constraint length relates the number of bits upon which the  
output depends. 
 

B. Duo-Binary Turbo Codes 
Duo-Binary Turbo Codes (DBTC) differ from classical 

Convolutional Coding (CC) by the fact that the information 
bits are encoded pair wise [2]. The use of Circular Recursive 
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Systematic Constituent (CRSC) encoders, which rely on a 
tail-biting strategy, allows matching the ending and starting 
state of the encoder without any reduction of the code rate. 
The internal interleaver is based on an algorithmic 
permutation, defined by a single equation. This improved 
interleaver not only enhances the code’s performance at low 
error rates, but also enables the adjustment of the frame size 
of this type of CC by modifying only four values which 
parameterize the internal interleaver. As the mother code rate 
of DBTC is 1/2 instead of 1/3 for classical CC, it is also 
inherently more robust to puncturing. DBTC do also perform 
well at smaller block sizes and have been standardized in 
DVB with block lengths as small as 128 bits. Another 
particularity of DBTC comes from the number of Log 
Likelihood Ratio (LLR) that should be propagated during 
iterative decoding. Dealing with duo-binary symbols implies 
handling only 3 LLRs per symbol, since each couple of bits 
(Ak, Bk) can take only the values (0,0), (0,1), (1,0) or (1,1). As 
a consequence: 
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Where (a,b) ≠ (0,0). 
   
        

 
Figure 1.  Block diagram of a LDPC-coded system. 

III. SYSTEM MODEL 
 

The LDPC encoder maps each k–bit word produced by 
the source into an n-bit LDPC codeword. Each codeword is 
then passed to the mapper and modulator block, that 
transforms groups of t=log2M code bits into a symbol of the 
bi-dimensional M-QAM constellation. The modulated signal 
is then transmitted over an Additive White Gaussian Noise 
(AWGN) channel. At the receiver side, the demapper block is 
a maximum a posteriori (MAP) symbol-to-bit metric 
calculator, that is able to produce an initial likelihood value 
for each received bit (such values are denoted as intrinsic or 
channel messages). These messages serve as input for the 
Sum-Product Algorithm (SPA), that starts iterating and, at 
each iteration, produces updated versions of the extrinsic and 
the a posteriori messages [3] are used as input for the 
subsequent iteration (if needed), while the latter represent the 

decoder output, and serve to obtain an estimated codeword 
that is subject to the hard decision and the parity-check test. 
This is as show in the above Fig. 1. 

IV. LOW DENSITY PARITY CHECK CODES 

A. Construction of G 
A generator matrix G is used for constructing the code. 

The generator matrix may be found from the parity check 
matrix H. 

 
 

 
First we note that 

TT
X HXH =             (2) 

The code word x may be split into one information part I and 
one parity check part c. The code word may then be  
Written as 

][ ciX T |=           (3) 
Correspondingly, the parity check matrix may be split into 
two matrices: 

][ BAH |=             (4) 
From (2), we note that vector i is multiplied with matrix A, 

whereas vector c is multiplied with matrix B. 
On the basis of  (3) and (4), written as 

Ai Bc+ = 0             (5) 
If the matrix B is non-singular, (5) may be inverted and the 
check bits c may be found from (6) 

AiBc 1−=            (6) 
 

In practice, it may be necessary to swap over some of the 
columns in H  in order for B  to become non-singular. The 
product B A−1 makes out the generator matrix G . This 
matrix is calculated only once, and is used for all encoding. 
The parity check matrix is used for constructing a graph 
structure in the decoder. 

 

B. Graph Structure 
The decoding of LDPC codes may be efficiently 

performed through the use of a graph structure. In this work, 
Tanner graphs will be used for the decoding [4]. The graph is 
constructed from the parity check matrix H. Each row in the 
matrix is represented by a check node, whereas each 1 in the 
row is represented by an edge into a bit node. Each column is 
represented by a bit node, and each 1 in the column 
corresponds to an edge into a check node. This is illustrated 
in Fig. 2 and Fig. 3. In this manner, a graph is constructed 
which contains a total of N bit nodes and M check nodes. The 
number of edges is decided by the number of 1’s in the parity 
check matrix. All edges are connected to a check node and to 
a bit node. The number of edges connected to a node denotes 
the degree of the node. 
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Figure 2.  Check Nodes. 

 
Figure 3.  Bit Nodes. 

C. Decoding 
In this context, the decoder is a soft-decision input 

decoder, implying that it operates on the channel symbols, 
denoted by 

nxr +−= 12                       (7) 
where n is the AWGN noise vector added in the channel 

and x is the code word. 

      Finding the probability of the parity of a vector is a 
central concept in the decoding of LDPC codes. Each parity 
check may be regarded a vector of even parity [5]. First, we 
define the Likelihood Ratio (LR) as the ratio between the two 
probabilities P(x = 1) and P(x = 0): 
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The symbol _ is used for the Log Likelihood Ratio, 
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If x is a vector of bits, the LLR of a bit i in that vector is 
given by λ i  
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The notation   Φ( )x  is used for the vector parity. The LLR of 
the parity of the vector x is then given by: 
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In order to compute λΦ( )x , (12) is used: 

∏
=

Φ −
=

− n

i

ix

1

)( )
2

tanh()
2

tanh(
λλ

                  (12) 

Equation (12) is solved with respect toλΦ( )x : 
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The a posteriori LLR of a bit n is given by: 

)|0(
)|1(log
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n

n
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=
=λ      (14) 

The vector r may be split into two parts: rn, which refers to 
the systematic part of the code word, and { }ri n≠ , which 
refers to the parity bits of the code word. (15) may then be 
expressed as 
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Bayes rule is given by: 

)(
),()|(

bP
abPbap =          (16) 

We use this rule in order to re-express the numerator of (15) 
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Furthermore, using the equality
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Given xn, rn is statistically independent of { }ri n≠  : 
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Following the same line of reasoning, the denominator of 
(15) is expanded. (15) then becomes: 
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In an AWGN channel the conditional probability f r xn n( | )  
is given by (21). 
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Substituting (21) into (20) we get (22). 
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The first element of the right hand side of the equal sign is 
denoted the intrinsic part, whereas the second element is 
denoted the extrinsic part. Note that if it is known that  the 
parity of a vector x is 0 (even parity), the probability that a bit 
xn is 1, given the received values of the rest of the vector 
r ni ≠ , is the same as the probability that the rest of the 
vector { }r ni ≠ has odd parity. 
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If the graph is free of cycles, the vectors x1,x2..xj are 
independent, given { }r ni ≠ , and if the elements within the 
vector are independent, (23) may be written as (24) and (25). 
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In the graph, λ i l,   is the message (contribution) from bit 
node i to check node l: 
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We substitute (13) into (25) 
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Equation (27) is the expression of the LLR of bit n. The first 
part is the intrinsic information, whereas the second part is 
the extrinsic information from the j vectors that contain bit n. 

 

V. THE BIT RELIABILITY MAPPING STRATEGY 
In general, an irregular LDPC code performs better than a 

regular LDPC code. An irregular LDPC is characterized by 
the degree distribution pair (λi, ρj ), where λi is the fraction of 
edges connected to variable nodes of degree i and ρj is the 
fraction of edges connected to check nodes of degree j. 
Different variable node degrees imply different reliabilities 
after decoding. The larger the degree, the higher the average 
reliability. One way to explain this is to first note that the 
degree of a variable node is equal to the number of ones in 

the corresponding column of the code’s parity-check matrix 
H. The column of a parity-check matrix can be considered to 
be a repetition code with the number of ones corresponding to 
the number of repetitions . The more repetitions, the more 
reliable the decoded bit; that is, the larger the node degree, 
the more reliable the decoded bit. 

For M-ary modulation, we transmit m bits, (cm−1, ..., c1, 
c0), in different levels (or “bit planes”),where c0 is in the 
least-significant-bit (LSB) level and cm−1 is in the most-
significant-bit (MSB) level. Bits transmitted at different 
levels are protected differently. The LSB level has the 
weakest protection and the MSB level has the strongest 
protection. Based on this knowledge, we propose a bit-
reliability mapping strategy. In the bit-reliability mapping 
strategy, we map the less reliable LDPC code bits to the 
lower level modulation bits and the more reliable bits to the 
higher level bits. 

VI. DEMAPPER BASED ON APROXIMATION EXPRESSION    

A. Second Order Approximation      
When the value of SNR (and then of E Nb o/  ) is 

sufficiently high, can be greatly simplified by considering, in 
each sum, the leading term only. This dominant contribution 
is due to the signals s s js Ay k

0 0 0= + ∈  and 

s s js By k
1 1 1= + ∈  that, for each k, are at minimum distance 

from the received sample. This technique coincides with the 
log-sum approximation and has been successfully applied for 
both product codes [6] and convolutional codes [7]. Actually, 
by imposing this simplification and taking into account  
becomes:  

2
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5
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2
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yxxxk
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SNRz −+−≈Δ                (28) 

This relationship is very simple and more expressive than: 
first of all we notice a linear dependence on the SNR (such 
dependence is necessarily more involved in the rigorous 
expression). Moreover, in general, it can be further 
simplified. It is easy to see that s0  and s1  have always in 
common the in-phase component (i.e., s sx x

0 1= ) or the 

quadrature component (i.e., s sy y
0 1= ) and that the maximum 

difference between the unequal components is 4a.Together 
with the highlighted maximum value, with simple algebra we 
find:  

3log 5
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Where [x] is the smallest integer greater than x.  
A function of E Nb o/ , and compared to the exact one (for 
bits 1 and 2). Both the exact and approximate curves exhibit, 
as obvious, a staircase behavior. Small regions usually exist, 
for low/medium signal-to-noise ratios, where the approximate 
formula can provide a value ms of one bit higher than that 
given by the exact formula. Actually, these regions are 
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practically indistinguishable, in the E Nb o/  range 
considered, for the first bit, whilst they are evident for the 
second bit. This is due to the fact that, when the second bit is 
considered, the maximum difference between the dominant 
contributions in Δz2  is smaller than 4a. So, in principle, an 
adaptive quantization can be conceived, that varies the value 
of ms according with the bit position. Anyway, it is clear that 
such a procedure would be difficult to manage in a practical 
implementation.  

      The same simplification used in (28) can be also 
introduced in the LLR expression. This looks like the classic 
max-log approximation. Under the same hypotheses, 
becomes:  
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    The residual difference between L bk( )  and L bk' ( ) , 
that is due to the approximation, is appreciable for small 
signal-to-noise ratios. An example is shown in Fig. 4, for 
E Nb o/ =0 dB, where L b( )1 and L b( )2 are plotted as a 
function of x, for an arbitrary y. The difference becomes 
smaller and smaller for increasing signal-to-noise ratios and, 
at the values of E Nb o/ of interest (i.e., those required to 
have low error rates), it is usually acceptable for all bits. An 
example is shown in Fig. 5 for E Nb o/ =8dB; in this case 
the exact and approximate curves are almost overlaid. In 
comparison with Fig. 4, it is interesting to observe the very 
different LLRs dynamics. 
 

 
Figure 4.  Comparision between the exact and approximate LLRs for the 

first two bits,as a function of x (fixed y),at E Nb o/ =0dB. 

 
Figure 5.  Comparision between the exact and approximate LLRs for the 

first two bits,as a function of x (fixed y),at E Nb o/ =8dB. 

B. Simplified Demapper 
 

The acceptability of the approximation suggests a simple 
solution to reduce considerably the complexity of the 
demapper block. The exact expression for L bk( ) , in fact, 
requires the implementation of a processor able to calculate 
f x yk ( , , )σ  , given its inputs. An alternative solution would 

be to store the values of f x yk ( , , )σ  in a LUT indexed on 
xq,yq,σ q (i.e. the quantized versions of x,y,σ , respectively). 
 Looking at (30), instead, a smarter solution is possible. Due 
to the linearity in the SNR ,the mc-bit level indexes for the 
quantized version of 
f x y x s y s x s y sk x y x y( , ) ( ) ( ) ( ) ( )= − + − − − − −1 2 1 2 0 2 0 2 Can be 

stored in the LUT, in place of those of L bk' ( )  . This way, 
the dependence on the SNR is eliminated, and the mc-bit 
output words only depend on the ms-bit input words, 
regardless of the channel. To reconstruct the value of 
L bk' ( ) from each mc-bit value, if needed, the circuit shown 

in Fig. 6 can be adopted. It multiplies each level index by the 
fixed point representation of SNR a/ ( )10 2 . This circuit 
uses an SNR value that is continuously estimated at the 
receiver side, for example by using the signal-mean square 
error (S/MSE) ratio. When multiplication is performed, it is 
easy to show that, if l is the number of bits used to represent 
(the always positive quantity) SNR a/ ( )10 2 and the mc-bit 
index includes one sign bit, the output value of L bk' ( )  can 
be represented through m’=mc+l  bits, at the most. 
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Figure 6.  Circuit for the evaluation of  L bk' ( ) . 

VII. CONCLUSION 
We studied the performance of LDPC-coded modulation 

systems with 8PSK and 16QAM. With the proposed BR and 
second  order approximation demapper strategy, a 0.15 dB - 
0.2 dB performance improvement over the conventional 
mapping method is achieved. The performance of LDPC-
coded modulation systems with Gray and natural labeling are 
studied. For natural labeling, iterative decoding/demodulation 
is required whereas demodulating once is all necessary for 
Gray labeling. We showed that mapper and demapper 
involved systems are always superior to systems. 
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