
 

 

  
Abstract—A state of the art Speaker Identification (SI) system 

requires a robust feature extraction unit followed by a speaker 
modeling scheme for generalized representation of these features. 
Over the years, Mel-Frequency Cepstral Coefficients (MFCC) 
modeled on the human auditory system has been used as a standard 
acoustic feature set for speech related applications. On a recent 
contribution by authors, it has been shown that the Inverted Mel-
Frequency Cepstral Coefficients (IMFCC) is useful feature set for 
SI, which contains complementary information present in high 
frequency region. This paper introduces the Gaussian shaped filter 
(GF) while calculating MFCC and IMFCC in place of typical 
triangular shaped bins. The objective is to introduce a higher 
amount of correlation between subband outputs. The performances 
of both MFCC & IMFCC improve with GF over conventional 
triangular filter (TF) based implementation, individually as well as 
in combination. With GMM as speaker modeling paradigm, the 
performances of proposed GF based MFCC and IMFCC in 
individual and fused mode have been verified in two standard 
databases YOHO, (Microphone Speech) and POLYCOST 
(Telephone Speech) each of which has more than 130 speakers.      
 

Keywords—Gaussian Filter, Triangular Filter, Subbands, 
Correlation, MFCC, IMFCC, GMM.   

I. INTRODUCTION 
NY speaker identification [1],[2] system consists of a 
speaker specific feature extractor as a front-end module 

followed by a robust speaker modeling technique for 
generalized representation of extracted features. MFCC [3], 
[4] is considered as a reliable front-end for a typical SI 
application (Fig. 1) as it can describes the vocal tract 
characteristics and easy to extract. An illustrative SI system 
is shown in fig. 1. 

The state of the art speaker recognition research primarily 
investigates speaker specific complementary information 
relative to MFCC. The speaker identification performance 
improves significantly when this complementary information 
is fused with MFCC in feature level either by simple 
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concatenation or by combining models’ scores. The 
examples of such complementary information are pitch [5], 
residual phase [6], prosody [7], dialectical features [8] etc. 
However, these features are related with vocal chord 
vibration from which faithful extraction of speaker specific 
information are quite difficult. In a recently contributed 
article [7] by present authors, it has been shown that 
complementary information [9] can be captured easily from 
the high frequency part of the energy spectrum of a speech 
frame via reversed filter bank methodology.  The work has 
proposed a new feature set called IMFCC to capture speaker 
specific information lying in higher frequency part of the 
spectrum and is usually ignored by MFCC.  The 
complementary information captured by IMFCC is modeled 
by standard Gaussian Mixture Modeling (GMM) [10] 
technique. It is seen that when fused with MFCC based 
speaker model, the performance of a SI system outperforms 
baseline MFCC significantly.  
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Fig. 1  A typical Speaker Identification System 

 
Nevertheless, both MFCC and IMFCC use TF to get 

subband outputs from energy spectrum.  A triangular filter 
(TF) provides crisp partitions in an energy spectrum by 
providing non-zero weights to the portion covered by it 
while giving zero weight outside it. The phenomena cause 
loss of correlations between a subband output and the 
adjacent spectral components that are present in the other 
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subbands.  Note that, in [11], a parallel redundant 
architecture was proposed that could keep most of the 
correlation between subbands for improving SI performance. 
Lippmann [12] showed that the redundancy between 
subbands might be a source of human robustness to speech 
degradation. However, no attempts have been yet made to 
extract features to introduce correlation in a systematic way 
that is missed by TFs for their crisp division from one 
subband to other. 

In this work, we use Gaussian Shaped filters (GF) as the 
averaging bins instead of triangular for calculating MFCC as 
well as IMFCC in a typical SI application. The motivation of 
using GF is threefold. First, Gaussian shaped filters can 
provide much smoother transition from one subband to other 
preserving most of the correlation between them. Second, the 
means and variances of these GFs can be independently 
chosen in order to have control over the amount of overlap 
with neighboring subbands. Third, the filter design 
parameters for GF can be calculated very easily from mid as 
well as end-points located at the base of the original TF used 
for MFCC and IMFCC. Both MFCC and IMFCC filter bank 
[13], [14] are realized using a moderate variance where a 
GF’s coverage for a subband and the correlation is to be 
balanced.  

  Results show that GF based MFCC and IMFCC perform 
better than the conventional TF based MFCC and IMFCC 
individually. Results are also better when GF based MFCC 
& IMFCC is fused by their model scores in comparison to 
the results that are obtained by combining MFCC and 
IMFCC feature sets realized using traditional TF.  All the 
implementations have been done with GMM as speaker 
modeling paradigm with different model orders in two  
standard databases (YOHO [15], Microphone speech & 
POLYCOST [16], telephone speech), each containing more 
than 130 speakers.   

The rest of the paper is organized as follows: Section II 
briefly reviews the concept of MFCC, its implementation 
using proposed GF.  Next, IMFCC and GF based IMFCC are 
discussed in Section III. Section IV outlines the GMM based 
speaker model used for SI task. Section V explains the 
scheme for the fusion of classifiers. Section VI reports the 
experimental results. Finally, Section VII draws the principal 
conclusions of the paper.  

II. MEL FREQUENCY CEPSTRAL COEFFICIENTS AND 
THEIR CALCULATION BY GAUSSIAN FILTERS  

A. Mel-Frequency Cepstral Coefficients using triangular 
filters 
According to psychophysical studies [17], human 

perception of the frequency content of sounds follows a 
subjectively defined nonlinear scale called the Mel scale [18] 
(Fig. 5, Solid curve). This is defined as, 

mel 10
ff 2595log 1

700
⎛ ⎞= +⎜ ⎟
⎝ ⎠

                       (1) 

where fmel is the subjective pitch in Mels corresponding to 
f, the actual frequency in Hz. This leads to the definition of 
MFCC, a baseline acoustic feature [19] for Speech and 
Speaker Recognition applications, which can be calculated as 
follows.  

Let { } sN

n 1
y( n )

=
 represent a frame of speech that is pre-

emphasized and Hamming-windowed. First, y(n) is 
converted to the frequency domain by an Ms-point DFT 
which leads to the energy spectrum, 
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   where, 1≤ k ≤ Ms. This is followed by the  construction of 
a filter bank with Q unity height TFs, uniformly spaced in 
the Mel scale (eqn. 1). The filter response Ψi(k) of the ith 
filter in the bank (fig. 2) is defined as, 
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where 1 ≤ i ≤ Q, Q is the number of filters in the bank, 

{ }
Q 1

i
i 0

bk
+

=

are the boundary points of the filters and k denotes 

the coefficient index in the Ms-point DFT. The filter bank 

boundary points, { }
Q 1

i
i 0

bk
+

=

 are equally spaced in the Mel scale 

which is satisfied by the definition, 

{ }
i

mel high mel low1s
b mel mel low
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−
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(4) 

 
Fig. 2 Response Ψi(k) of a typical Mel scale filter defined as in eqn. 
3 

 
 where the function fmel (•) is defined in eqn. 1, Ms is the 

number of points in the DFT (eqn. 2), Fs is the sampling 
frequency, flow and fhigh are the low and high frequency 
boundaries of the filter bank and fmel

-1 is the inverse of the 
transformation in eqn. 1 defined as,  
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1 2595

mel melf ( f ) 700 10 1− ⎡ ⎤
= ⋅ −⎢ ⎥

⎣ ⎦
                   (5)  

 The sampling frequency Fs and the frequencies flow and fhigh 
are in Hz while fmel is in Mels.  For both the databases 
considered in this work, Fs are 8 kHz. Ms was taken as 256, 
flow = Fs/Ms = 31.25 Hz while fhigh = Fs/2 = 4 kHz. 
   Next, this filter bank is imposed on the spectrum calculated 
in Eqn. 2. The outputs e(i)i=1

Q of the Mel-scaled band-pass 
filters can be calculated by a weighted summation between 
respective filter response Ψi(k) and the energy spectrum 
|Y(k)|2 as  

Ms
2 2

i
k 1

e( i ) Y( k ) ( k )Ψ
=

= ⋅∑                       (6) 

    Finally, DCT is taken on the log filter bank energies 
{log[e(i)]}i=1

Q and the final MFCC coefficients Cm can be 
written as, 

[ ]
Q 1

m
l 0

2 2l 1C log e( i 1) cos m
Q 2 Q

π−

=

⎡ ⎤−⎛ ⎞= + ⋅ ⋅ ⋅⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑ (7) 

   where,  0≤ m ≤ R-1, R is the desired number of cepstral 
features.  

B. Mel-Frequency Cepstral Coefficients using Gaussian 
filters 
A TF is asymmetric, tapered but does not provide any 

weight outside the subband that it covers. As a result, the 
correlation between a subband and its nearby spectral 
components from adjacent subbands is lost. We propose here 
to use of GF, which is symmetric and provides gradually 
decaying weights at its both ends for compensating possible 
loss of correlation. Referring to eqn. 3, the expression for GF 
can be written as 

 
2

bi
2

MFCC i

( k k )

g 2
i e σΨ

−
−

=                                 (8) 
 

 where, 
ibk is a point between the ith TF’s boundaries 

located at its base and considered as the mean of ith GF 
while the iσ is the standard deviation or square root variance 
of and can be defined as, 

i 1 ib b
i

k k
σ

α
+

−
=                               (9) 

where, α  is the parameter that controls the variance. 
However, in the eqn. 8, the conventional denominator i.e. 

( ) i2π σ is dropped, as its presence is only to ensure the area 

under a Gaussian curve [20] is unity. Moreover, omitting the 
term helps a GF to achieve unity as highest value at its mean, 
which is similar to unity height triangular shaped filter used 
for conventional MFCC. Note that, a TF become non-
isosceles while they are mapped into normal frequency 
domain (Ref. eqn 5) for which the two distances calculated 

from its two ends to 
ibk  in base become unequal. For 

MFCCs’ ith   filter, the relation becomes, 

( ) ( )i 1 i i 1b b bi bk k k k
+ −

− > −                  (10)   

We took the maximum spread out of these two distances i.e. 

( )i 1 ib bk k
+

− to evaluate iσ ensuring full coverage of the 

subband by the GF.   
 In Fig.3, we plot TF and GF for different σ values. The 

figure clearly depicts that a triangular window can give some 
sort of tapering at its both ends but lacks also in offering of 
no of weights outside its coverage.  
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Fig.  3 Response of various shaped filters 

 
All three GFs are centered around 

ibk and offer gradual 
decaying weights to the portion of the spectrum away from 
center.  However, the Gaussian with higher variance 
(Gaussian Filter 1 in fig. 3) shows larger correlation with 
adjacent frequency components.  Thus the choice of  α  is 
crucial for setting the variances of GF. If α =3 then by eqn. 
9 we can write, 

  
i 1 ib bk k 3σ
+

− =                                 (10) 

which in turn signifies that Pr [(
i 1 ib bk k
+

− ) ≤ 3 iσ ] = 0.997, 

where Pr[•] denotes the prior probability [17] of an event.  
The above relation depicts 99.7% coverage of a GF for a 
particular subband. Similarly, for α =2, a GF guarantees 
95% coverage within a subband, since 
Pr[(

i 1 ib bk k
+

− ) ≤ 2 iσ ] = 0.95. Therefore, α =2 can provide 
better correlation with adjacent subbands in comparison to 
α =3 which sets a Gaussian window to deliver only 0.3% of 
its total weights to the frequencies other than its own 
subband. One could have chosen α =1 for which the 
variance will be, too high with 68% (because Pr 
[(

i 1 ib bk k
+

− ) ≤ iσ ] = 0.68) of a filter’s total weights to the 

subband of interest. Therefore, a trade-off occurs between 
the coverage by A GF for a particular subband and the 
portion lying outside of it. We have chosen α =2 to design 
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filters for the MFCC filter bank. Thus, a balance is achieved 
where significant coverage of a particular subband is ensured 
while allowing moderate correlation between that subband 
and neighboring ones.   Figure 4. shows the structure of  
MFCC filter bank using triangular and Gaussian bins.  The 
cepstral  vector using GFs can be calculated from the filter’s 
response (eqn. 8) which is as follows;  

MFCC MFCC

Ms
2 2g g

i
k 1

e ( i ) Y( k ) ( k )Ψ
=

= ⋅∑                 (11) 

and,  

MFCC MFCC
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g g
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2 2l 1C log e ( i 1) cos m
Q 2 Q

π−

=

⎡ ⎤−⎛ ⎞⎡ ⎤= + ⋅ ⋅ ⋅⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦
∑  

(12) 
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Fig. 4 Filter Bank Structure for canonical MFCC and Gaussian 
Filter based MFCC 

 
Typically, Q = 20 and 10 to 30 cepstral coefficients are taken 
for speech processing applications. Here we took Q = 20, R = 
20 and used the last 19 coefficients from both normal MFCC 
and GF based MFCC to model the individual speakers. 

III. INVERTED MEL FREQUENCY CEPSTRAL 
COEFFICIENTS CALCULATION BY GAUSSIAN 

FILTERS 

A. Inverted Mel-Frequency Cepstral Coefficients using 
triangular filters 
The Inverted Mel Scale (fig. 5, dotted line) proposed by 

present authors [7] is defined by a competing filter bank 
structure which is indicative of a hypothetical auditory 
system which has followed a diametrically opposite path of 
evolution than the human auditory system. The idea is to 
capture those information which otherwise could have been 
missed by original MFCC. 

We obtain the new filter bank structure simply by flipping 
the original filter bank around the point f = 2 kHz which is 
precisely the mid-point of the frequency range considered for 
SI applications, i.e. (0 to 4 kHz (sec. II)). This flip-over is 

expressed mathematically as,  

s
i Q 1 i

M( k ) 1 k
2

Ψ Ψ + −
⎛ ⎞= + −⎜ ⎟
⎝ ⎠

                    (13) 

where i ( k )Ψ  is the Inverted Mel Scale filter response while 

i ( k )Ψ  is the response of the original MFCC filter bank, 1≤  
i ≤  Q and Q is the number of filters in the bank. Analogous 
to eqn. 3 for the original MFCC filter bank, we can derive an 
expression for i ( k )Ψ i=1

 Q from eqn. (13) as follows, 
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where 1 ≤ k ≤ Ms and { }
Q 1

i
i 0

bk
+

=

 

The inverted mel-scale is then defined by the following 
expression.  

10mel
4031.25 ff ( f ) 2195.2860 2595log 1

700
−⎛ ⎞= − +⎜ ⎟

⎝ ⎠
 

(15) 
Note that, detailed calculations for deriving the inverted 

mel scale can be found in [7]; 
 

where melf ( f )  is the subjective pitch in the new scale 
corresponding to f, the actual frequency in Hz.  

 
Fig. 5 Subjective Pitch vs Frequency. For Mel scale, corresponding 
to the human auditory system, pitch increases progressively less 
rapidly as the frequency increases, In direct contrast, it increases 
progressively more rapidly in the proposed Inverted Mel Scale 
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    We find the filter outputs { }Q

i 1
e( i )

=
 in the same way as 

MFCC from the same energy spectrum |Y(k)|2 as, 
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e( i ) Y( k ) ( k )Ψ
=

= ⋅∑                   (16) 

Finally, DCT is taken on the log filter bank energies 

{ }Q

10
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log [ e( i )]
=

  and the final Inverted MFCC coefficients 

{ }R
m

m 1
C

=
  can be written as,  

Q 1

m
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2 2l 1C log e( i 1) cos m
Q 2 Q

π−
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⎡ ⎤−⎛ ⎞⎡ ⎤= + ⋅ ⋅ ⋅⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦
∑  

(17) 

B. Inverted Mel-Frequency Cepstral Coefficients using 
Gaussian filters 
In this, work IMFCC filter bank is also realized using 

Gaussian bin.  It is expected that introduction of correlation 
between subband outputs in inverted mel-scaled filter bank 
makes it more complementary than what was realized using 
TF.  
 Flipping the original triangular filter bank, around 2 KHz 
inverts also the relation mentioned in eqn 10 that gives 

( ) ( )i 1 i 1 ibi b b bk k k k− +− > −                      (18) 

for inverted mel scale. Here, ibk is taken as mean of ith GF 

while standard deviation iσ  can be estimated by the 
following relation; 

i i 1
b b

i
k k

σ
α

−
−

=                               (19) 

Note that α  is chosen also here as 2 for the same reason 
mentioned in Sec. II B. Therefore, response of the GF for 
IMFCC filter bank and corresponding cepstral parameters 
can be calculated as follows; 

2
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i e σΨ
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and finally, 
IMFCC IMFCC

Q 1g g
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As with MFCC, we took Q = 20, R = 20 and used the last 

19 coefficients to model the individual speakers.  Figure 5 
shows the typical structure of IMFCC realized using 
triangular and Gaussian window and figure 6 describes 
extraction of the feature sets.    
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Fig. 6 Filter Bank Structure for canonical IMFCC and Gaussian 
Filter based IMFCC 
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Fig. 7 Plot showing extraction of Triangular /Gaussian MFCC and 
Triangular/Gaussian IMFCC features 

IV. THEORETICAL BACKGROUND ON GAUSSIAN MIXTURE 
MODELS (GMM) 

A GMM [10] can be viewed as a non-parametric, 
multivariate probability distribution model that is capable of 
modeling arbitrary distributions and is currently one of the 
principal methods of modeling speakers for SI systems. The 
GMM of the distribution of feature vectors for speaker s is a 
weighted linear combination of M unimodal Gaussian 
densities bi

s(x), each parameterized by a mean vectors μi
s 

with a diagonal covariance matrix ∑i
s. These parameters, 

which collectively constitute the speaker model, are 

represented by the notation  { }Ms s s
i i i i 1

p ,μ Σ
=

 . The pi
s are the 

mixture weights satisfying stochastic constraint 
M

s
i

i 1

p
=

=1∑  .  

For a feature vector x the mixture density for a speaker s is 
computed as 

( ) ( )
M

s s
s i i

i 1
p x | p b xλ

=

= ∑                                 (23) 

where, 
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π Σ
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and D is the dimension of the feature-space.  
Given a sequence of feature vectors X={x1, x2… xT} for an 

utterance with T frames, the log-likelihood of a speaker 
model s is 

( ) ( ) ( )
T

s s t s
t 1

L X log p X | log p x |λ λ
=

= = ∑  (25) 

assuming the vectors to be independent for computational 
simplicity. For SI, the value of Ls(X) is computed for all 
speaker models λs enrolled in the system and the owner of the 
model that generates the highest value is returned as the 
identified speaker. During training, feature vectors collected 
from a speaker's utterances are trained using the Expectation 
and Maximization (E & M) algorithm. This technique 
involves an iterative update of each of the parameters in λ, 
with a consequent increase in the log-likelihood at each step. 
Usually, within a few iterations (10 to 25) the model 
parameters converge to stable values. In the present work, 
initialization of seed vectors for Gaussian centers was done 
by the split Vector Quantization [21] algorithm This was 
followed by the E & M algorithm with 10 iterations. For all 
cases, diagonal covariance matrices were chosen because 
DCT has already uncorrelated the features (eqn. 7, 12, 17, 
and 22) in respective cases. 

V. FUSION OF SPEAKER MODELS  
 Combining classifier [9] decisions to improve decision 

reliability has been successful in many pattern classification 
[6], [9], [19], [22] problems including SI. According to the 
available literature, the combination of two or more 
classifiers would perform better if they were supplied with 
information that are complementary in nature. Adopting this 
idea in our work, we supplied MFCC and IMFCC feature 
vectors, which are complementary in information content, to 
two classifiers respectively and finally fused their decisions 
in order to obtain improved identification accuracy. The 
same principle has been adopted for GF based MFCC and 
IMFCC also. In this context, it should be noted that our 
computation of complementary information from IMFCC 
involves comparably lower computational complexity than 
higher-level features [6-8] [23]. 
  During the training phase, two separate models were 
developed for each speaker from the MFCC and IMFCC 
feature sets respectively, using GMM technique (Sec. IV). 
During the test phase, MFCC and IMFCC features were 
extracted in a similar way from an incoming speech utterance 
as done in the training phase and were sent to their respective 
models. For each speaker, two scores were generated, one 
each from the MFCC and IMFCC models. Since sum rule 
outperforms other combination strategies due to its lesser 
sensitivity to estimation errors, an uniform weighted sum 
rule was adopted to fuse the scores from the two classifiers. 
  Further, since in each case we fused the scores of two 
classifiers of the same type (GMM-GMM), no score 

adaptation or normalization was necessary before 
combination. 
  If Si

MFCC (or Sig
MFCC) and Si

IMFCC (or Sig 
IMFCC) are the scores 

generated by the two models for the ith speaker then the 
combined score Si

com (or Sig
com) is expressed as 

 ( )1i i i
com MFCC IMFCCS wS w S= + −                  (26 a) 

Or,         ( )1g g gi i i
com MFCC IMFCCS wS w S= + −                 (26 b) 

 
  A governing equation is given below which describes 
fusing outputs of parallel classifiers methodology via 
weighted sum rule. 

( ) ( ) ( )1
T T

i
com tMFCC sMFCC tIMFCC sIMFCC

t 1 t 1
S w log p x | w log p x |λ λ

= =

= + −∑ ∑  

 (27 a) 
Or, 

( ) ( ) ( )1g
T T

i g g g g
com tMFCC sMFCC tIMFCC sIMFCC

t 1 t 1
S w log p x | w log p x |λ λ

= =

= + −∑ ∑  

(27 b) 
All the notations have their usual meanings. We have used w 
= 0.5 as the weight for all combinations. However, other 
weighting schemes that are more suitable can be investigated 
further to enhance the performance of the combined system. 
Finally, the identity of the true speaker itrue is given by- 

              i
true comi
i arg max S=                                  (28 a) 

Or,              g gi
true comi

i arg max S=                                (28 b) 

Note that, for eqns.  (26b, 27b, and 28b) have superscripted 
‘g’ symbol, which signify GF based MFCC and IMFCC 
filter bank. 
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Fig. 8 Parallel classifier based SI system 
A schematic description of this scheme for parallel 
combination of classifiers is given in fig. 8. 
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VI. EXPERIMENTAL EVALUATION 

A. Pre-processing stage 
In this work, each frame of speech is pre-processed by i) 

silence removal and end-point detection using an energy 
threshold criterion, followed by ii) pre-emphasis with 0.97 
pre-emphasis factor, iii) frame blocking with 20ms frame 
length, i.e Ns = 160 samples/frame (Sec. II) & 50 overlap, 
and finally iv) Hamming-windowing. Next, the MFCC and 
IMFCC feature sets using both triangular and GFs are 
calculated (ref. Sec II & III). The first coefficient 

( 0C , g
0C , 0C , and

g
0C ) is discarded since it contains only 

the energy of the spectrum and the resulting 19 dimensional 
vector is used. 

B. Databases for experiments 

a)  YOHO Database 
  The YOHO [1], [12] voice verification corpus was 
collected while testing ITT's prototype speaker verification 
system in an office environment. Most subjects were from 
the New York City area, although there were many 
exceptions, including some nonnative English speakers. A 
high-quality telephone handset (Shure XTH-383) was used 
to collect the speech; however, the speech was not passed 
through a telephone channel. There are 138 speakers (106 
males and 32 females); for each speaker, there are 4 
enrollment sessions of 24 utterances each and 10 test 
sessions of 4 utterances each. In this work, a closed set text-
independent speaker identification problem is attempted 
where we consider all 138 speakers as client speakers. For a 
speaker, all the 96 (4 X 24 utterances) utterances are used for 
developing the speaker model while for testing, 40 (10 
sessions X 4 utterances) utterances are put under test. 
Therefore, for 138 speakers we put 138 X 40 =5520 
utterances under test and evaluated the identification 
accuracies. 

b)  POLYCOST Database 
  The POLYCOST database [20] was recorded as a common 
initiative within the COST 250 action during January- March 
1996. It contains around 10 sessions recorded by 134 
subjects from 14 countries. Each session consists of 14 items, 
two of which (MOT01 & MOT02 files) contain speech in the 
subject's mother tongue. The database was collected through 
the European telephone network. The recording has been 
performed with ISDN cards on two XTL SUN platforms 
with an 8 kHz sampling rate. In this work, a closed set text 
independent speaker identification problem is addressed 
where only the mother tongue (MOT) files are used. 
Specified guideline [24] for conducting closed set speaker 
identification experiments is adhered to, i.e. ‘MOT02’ files 
from first four sessions are used to build a speaker model 
while ‘MOT01’ files from session five onwards are taken for 
testing. Unlike YOHO database all the speakers do not have 
the same number of sessions. Further, three speakers (M042, 
M045 & F035) are not included in our experiments as they 

provide sessions which are lower than 4. A total 754 
‘MOT01’ utterances are put under test. As with YOHO 
database, all speakers (131 after deletion of three speakers) 
in the database were registered as clients. 

C. Score Calculation 
For any closed-set speaker identification problem, 
identification accuracy is defined as follows in [10] and we 
have used the same: 
 
P e rc e n ta g e  o f  id e n t i f ic a t io n  a c c u ra c y  (P IA )=
N o . o f  u t te ra n c e s  c o r re c t ly  id e n t i f ie d

T o ta l n o . o f  u t te ra n c e s  u n d e r  te s t
 

(29) 

D. Experimental Results 
  For each database, we evaluated the performance of an 
MFCC based classifier, an IMFCC based classifier where 
each feature set has been implemented using TF as well as 
GF and a parallel classifier fusing both models.  

1) Results for YOHO Database 
  Table I describes identification results for various model 
orders of GMM with TF based MFCC and IMFCC features 
set. The last column in the table depicts the identification 
accuracies for the combined scheme. The combined scheme 
shows significant improvements over MFCC based SI 
system for different model orders. Further, even the 
independent performance of the IMFCC based classifier is 
comparable to that of the MFCC based classifier. Note that, 
identification accuracies increase with increase in model 
order.  

Table II represents PIA of individual MFCC, IMFCC and 
fused scheme when GFs are used. It is evident from the table 
that individual performance of each feature set improves 
when compared against convention TF based MFCC and 
IMFCC.  The fused scheme also outperforms GF based 
single streamed MFCC as well as earlier combined scheme 
using TFs, which in turn shows enhancement of 
complementary information applying GF for realizing the 
filter bank. Here also, PIA increases with increase in model 
order.   

 
TABLE I  

RESULTS (PIA) FOR YOHO DATABASE USING TF BASED MFCC & IMFCC 
 

No. of 
Mixtures 

MFCC 
 

IMFCC 
 

Combined 
System  

16 94.2029 94.1486 96.2500 
32 95.6703 95.2174 97.2645 

 
TABLE II  

RESULTS (PEA) FOR YOHO DATABASE USING GF BASED MFCC & IMFCC 
 

No. of 
Mixtures 

MFCC 
 

IMFCC 
 

Combined 
System  

16 95.4891 94.2572 96.5036 
32 96.8279 95.2355 97.4275 
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2) Results for POLYCOST 
  Table III & IV show the identification accuracies for the 
POLYCOST database for TF and GF .based filters 
respectively. PEA obtained using GF based filter bank 
improves in individual feature sets and combined scheme 
over various model orders. As with the YOHO database, it 
can be observed from these tables that combined scheme 
shows significant improvement over the baseline MFCC 
based system irrespective of the filter type. In addition, 
results improve as model order increases. We restrained 
ourselves to 2 different sized mixtures for GMM. This is 
because less number of feature vectors is obtained from the 
POLYCOST database that prevents development of 
meaningful higher order GMMs. 
 

TABLE III 
RESULTS (PIA) FOR POLYCOST DATABASE USING TF BASED MFCC & 

IMFCC 
 

No. of 
Mixtures 

MFCC 
 

IMFCC 
 

Combined 
System  

8 77.8515 76.2599 81.0345 
16 77.8515 77.0557 81.1631 

 
TABLE IV 

RESULTS (PIA) FOR POLYCOST DATABASE USING GF BASED MFCC & 
IMFCC 

 
No. of 

Mixtures 
MFCC 

 
IMFCC 

 
Combined 

System  
8 78.6472 76.2599 82.0955 

16 80.9019 77.5862 82.7586 
 
   It is observed that the independent performance of IMFCC 
is not as good as MFCC for POLYCOST database as 
compared to YOHO. This is because the data in POLYCOST 
is based on telephone speech where higher frequency 
information used by IMFCC are somewhat distorted. 
Nevertheless, results show that the complementary 
information supplied by it helps to improve the performance 
of MFCC in parallel classifier to a great extent for two types 
of filters. Thus it can be said that, compared to a single 
MFCC based classifier; a speaker can be modeled with the 
same accuracy but at a comparatively lower order model by 
an MFCC-IMFCC parallel classifier. It could be further 
concluded that GF based IMFCC provides better 
complementary information than TF based IMFCC.. 

VII. CONCLUSION 
Gaussian filter based mel and inverted mel scaled filter 

bank is proposed in this paper. An uniform variance is used 
to design the filter banks, which could maintain a good 
balance between a filter’s coverage area and the amount of 
correlation. In both the scales, cepstral vectors are obtained 
and are modeled separately by GMM. Performance is found 
to be superior when the individual performance of the each 

new proposed feature set is compared with its corresponding 
baseline.  The result is shown for individual cases as well as 
for combined feature set for two speech databases YOHO, 
microphone speech, & POLYCOST, telephone speech, each 
of which contains more than 130 speakers. The increment of 
speaker identification accuracy in combined method using 
GF over TF based feature sets also suggest the possible 
enhancement of higher frequency complementary 
information relative to mel-scaled filters. The performance 
can further be improved by proper choice of mixing 
proportion of two streams in combined model.  
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