
Getting Started With FPGAs

So today, I thought I would talk about something other than microcontrollers. Today, I

will talk about how to get started with FPGAs.

What is a FPGA?

An FPGA is a field programmable gate array. Instead of programming a FPGA like your

standard microcontroller, you actually “implement” digital circuits using a hardware

description language (HDL). The two common hardware description languages includes

VHDL and Verilog. For today’s tutorial, we’ll implement our design using Verilog.

FPGA vs Microcontrollers

So what are the advantages of using a FPGA rather than a microcontroller? The

problem with microcontrollers is that they cannot run co-currently, or only run

sequentially, and very time limited. A FPGA runs in parallel, or able to run multiple

things at once, and much faster than microcontrollers. However, FPGAs are very space

limited and initially does not come with all of the fancy peripherals that

microcontrollers have. Things like timers, UART, and SPI must be implemented by hand

on the FPGA. Also, to have your design stay with the FPGA, you have to use a re-

programmable flash memory IC.

http://coolcapengineer.files.wordpress.com/2013/04/basys2top_sw.jpg

Parts List

To get started, you need only the following items

Hardware

 Basys 2 Board (100 die)

Software

 Xilinx Web ISE

 Digilent Adept

Installing Xilinx Web ISE

 To learn how to install the Xilinx Web ISE, I highly recommend visiting this URL .They

have all the necessary information on properly installing the ISE.

Installing Digilent Adept

 To program the Basys 2 board, you need to download Adept from Digilent’s website.

Just follow the on screen prompts for proper installation.

Starting A Project

 To create a new project, go to file->new project

 At the create project screen, select a name and location for the project. For this

example, let’s name the project “First_Project” and set the location to any location on

your computer. Make sure you select “HDL” as your Top-level source type.

http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,790&Prod=BASYS2
http://www.xilinx.com/products/design-tools/ise-design-suite/ise-webpack.htm
http://www.digilentinc.com/Products/Detail.cfm?Prod=ADEPT2
http://embeddedmicro.com/tutorials/the-mojo/installing-ise
http://www.digilentinc.com/Products/Detail.cfm?Prod=ADEPT2

 For project settings, make sure you have the following set…

1. Family is set to Spartan3E

2. Device is XC3S100E

3. Package is CP132

4. Speed is ~4

5. Synthesis Tool is XST (VHDL/Verilog)

6. Simulator is ISim (VHDL/Verilog)

7. Preferred Language is Verilog

 At Project Summary, select Finish.

http://coolcapengineer.files.wordpress.com/2013/05/fpga_tutorial1.jpg

Creating Verilog Module

 At the project menu, you should see x3s100e-4cp132. Right click on this and select

“New Source”

 At the new source menu, select Verilog module and set the name to blink.

 When prompted at the define module, just click next. We’ll define the inputs and

outputs later on. Afterwards select finish.

 In your blink.v file, copy and paste the following code into the file.

 Make sure to hit save.

Creating UCF File

Although we created the module, the FPGA does not know which pins on it should be

connected to the module’s inputs and outputs. This is where the UCF file comes in.

http://pastebin.com/raw.php?i=F4PK7Tza

 Right click you blink.v file and select “New Source”

 In your new source menu, select ” Implementation Constraints File.” We’ll name this file

“blink”. Don’t worry, this will not replace the blink.v file.

 Hit next and select finish

 In your blink.ucf file, copy and paste the following code.

 Make sure to hit save.

Creating Bit File

Okay, so we’re almost ready to program- I mean ” implement”- our digital design on

the FPGA. FPGAs are usually programmed using a bit file. We’re going to create a bit

file using the Web ISE.

 Click on blink.v in your project navigator

 Your should see ” Generate Programming File” in the Processes menu. Click on it.

http://pastebin.com/raw.php?i=c4tp2Wvw
http://coolcapengineer.files.wordpress.com/2013/05/fpga_tutorial4.jpg

 Wait for a little bit for the ISE to finish creating the bit file.

Checking Connections

It is very important to check to see if the FPGA really routed the inputs and outputs

correctly. To do this…

 Click on your blink.v file

 In the Processes menu, select ” Design Summary/Reports”

 In Design Overview click on ” Pinout Report”

 Check to see if “clk_in” is connected to B8 and “out” is connected to M5.

http://coolcapengineer.files.wordpress.com/2013/05/fpga_tutorial5.jpg

 As shown above, the ISE did not correctly route the connections. This can be solved by

resaving your UCF file and clicking the “Generate Programming File” option again.

Uploading the Digital Design To The FPGA

We’re at the final part of the tutorial!

 Open Digilent Adept

 Connect the Basys 2 to your computer and turn on it on.

http://coolcapengineer.files.wordpress.com/2013/05/fpga_tutorial7.jpg

 You can upload the bit file to the main FPGA or the board’s re-programmable flash

memory. Since we want the board to remember the bit file whenever we turn on or off

the board, we’ll program the bit file to the reprogrammable flash (PROM)

 Click browse button next to the PROM option

 Navigate to your project folder. The bit file should be inside the folder.

 Hit “program” next to browse

 After the bit file is uploaded to the board, turn off then turn on your board. You should

see LD0 blink every 500ms.

http://coolcapengineer.files.wordpress.com/2013/05/fpga_tutorial6.jpg

How does it work?

First thing, we need to use the 50MHZ clock on the board to tell the FPGA when 500ms

has occurred. But how? Well, frequency is really counts per second. Using unit

conversion and an onboard counter , we can find how many counts it takes for 500ms

to occur.

Now that we know the counts, how do we use it in our design? We can use a register, a

variable inside verilog, to function as our counter. During the positive edge of the

clock, we tell the design to increment the counter by 1. When counts reaches 25

million, the design resets the counter to 0 then invert the output of the LED, which

is initially set to off.

Source: http://coolcapengineer.wordpress.com/2013/05/06/tutorials-getting-

started-with-fpgas/

