

International Journal of Electrical and Electronics Engineering (IJEEE) ISSN (PRINT): 2231 – 5284, Vol-1, Iss-3, 2012

48

FPGA Based Embedded Multiprocessor Architecture

Sumedh.S.Jadhav & C.N.Bhoyar
Dept.of Electronics Engg , Priyadarshini College of Engineering, Nagpur, Maharashtra India

E-mail : sumedh_jadhav@rediffmail.com, cnbhoyar @yahoo.com

Abstract - Multiprocessor is a typical subject within the Computer architecture field of scope. A new methodology based on
practical sessions with real devices and design is proposed. Embedded multiprocessor design presents challenges and opportunities
that stem from task coarse granularity and the large number of inputs and outputs for each task. We have therefore designed a new
architecture called embedded concurrent computing (ECC), which is implementing on FPGA chip using VHDL. The design
methodology is expected to allow scalable embedded multiprocessors for system expansion. In recent decades, two forces have
driven the increase of the processor performance: Advances in very large-scale integration (VLSI) technology and Micro
architectural enhancements. Therefore, we aim to design the full architecture of an embedded processor for realistic to perform
arithmetic, logical, shifting and branching operations. We will be synthesize and evaluated the embedded system based on Xilinx
environment. Processor performance is going to be improving through clock speed increases and the clock speed increases and the
exploitation of instruction- level parallelism. We will be designing embedded multiprocessor based on Xilinx environment or
Modelsim environment.

Keywords—FPGA based embedded system; design computer architecture; multiprocessor architecture; real time processor.

I. INTRODUCTION

 In recent years, to accomplish with the Moore's law
hardware and software designers are tending
progressively to focus their efforts on exploiting
instruction-level parallelism.

 An Embedded system is an engineering artifact
involving computation that is subject to physical
constraints[1,3]. The Physical constraint arises through
two kinds of computational processes with physical
world:

• Reaction to physical environments.

• Execution on a physical platform.

 In recent decades, two forces have driven the increase
of the processor performance: Firstly, advances in very
large-scale integration (VLSI) technology and secondly
Micro architectural enhancements [1].

 Processor Performance has been improve through
clock speed Increases and the exploitation of instruction-
level parallelism. While transistor counts continue to
increase, recent attempts to achieve even more significant
increase in single-core performance have brought
diminishing returns [2, 3]. In response, architects are
building chips With multiple energy-efficient processing
cores instead of investing the whole transistor count into a

single, complex, and power-inefficient core [3, 4]. Modern
embedded systems are design as systems-on a-chip (SoC)

that incorporate single chip multiple Programmable cores
ranging from single chip multiple programmable cores
ranging from processors to custom designed accelerators.
This paradigm allows the reuse of pre-designed cores,
simplifying the design of billion transistor chips, and
amortizing costs. In the past few years, parallel-
programmable SoC (PPSoC)have Successful PPSoC are
high-performance embedded multiprocessors such as the
STI Cell [3] .They are dubbed single-chip heterogeneous
multiprocessors (SCHMs) because they have a dedicated
processor that coordinates the rest of the processing units.
A multiprocessor design with SoC like integration of less-
efficient, general-purpose processor cores with more
efficient special-purpose helper engines is project to be the
next step in computer evolution [5].

 First, we aim to design the full architecture of an
embedded processor for realistic throughput. We used
FPGA technology not only for architectural exploration
but also as our target deployment platform because we
believe that this approach is best for validating the
feasibility of an efficient hardware implementation.

 This architecture of the embedded processor
resembles a superscalar pipeline, including the fetch,
decode, rename, and dispatch units as parts of the in-
order front-end. The out of-order execution core

 FPGA Based Embedded Multiprocessor Architecture

International Journal of Electrical and Electronics Engineering (IJEEE) ISSN (PRINT): 2231 – 5284, Vol-1, Iss-3, 2012

49

contains the task queue, dynamic scheduler; execute
unit, and physical register file. The in order back-end is
comprised of only the retire unit. The embedded
architecture will be implementing using the help of RTL
descriptions in System VHDL.

 However, this situation has brought two major
problems. On one hand, it seems that software cannot
take profit of the possibilities that technology is
offering. Programs have poor parallelism and only small
solutions like transactional memory have been
presented. Likewise, the problems associated with
designing ever-larger and more complex monolithic
processor cores are becoming increasingly significant
Among other difficulties that slow innovation in these
fields, there is a key concept: testing and simulation.

 We will integrate the embedded processor with a
shared memory system, synthesized this system on an
FPGA environment, and performed several experiments
using realistic benchmarks. the methodology to design
and implement a microprocessor or multiprocessors is
presented. To illustrate it with high detail and in a useful
way, how to design the most complex practical session
is shown. In most cases, computer architecture has been
taught with software simulators [1], [2]. These
simulators are useful to show: internal values in
registers, memory accesses, cache fails, etc. However,
the structure of the microprocessor is not visible.

 In this work, a methodology for easy design and
real Implementation of microprocessors is proposed, in
order to provide students with a user-friendly tool.
Simple designs of microprocessors are exposed to the
students at the beginning, rising the complexity
gradually toward a final design with two processors
integrated in an FPGA; each of which has an
independent memory system, and are
intercommunicated with a unidirectional serial channel
[10].

 Based on FPGA technology, the system had to
provide the basic components of a multiprocessor
computer like a simple but complete processor, a
memory hierarchy and minimal I/O. From this point,
while software could be tested under a real
multiprocessor environment adapted to the user needs,
the platform would also allow researching in computer
architecture.

II. MULTIPROCESSOR

 Multiprocessor system consists of two or more
Connect processors that are capable of communicating.
This can be done on a single chip where the processors
are connected typically by either a bus. Alternatively,
the multiprocessor system can be in more than one chip,
typically connected by some type of bus, and each chip

can then be a multiprocessor system. A third option is a
multiprocessor system working with more than one
computer connected by a network, in which each
Computer can contain more than one chip, and each
chip can contain more than one processor.

 Traditionally, software simulation has been
essential for studying computer architecture because of
its flexibility and low cost. Regrettably, users of
software simulators must choose between high
performance and high fidelity emulation. Whatever it is
a new multiprocessor architecture or a transactional
memory library, software simulators are orders of
magnitude slower than the target system and don't offer
realistic conditions for the testing environment.

 This project aimed to design and implement an
FPGA-based multiprocessor architecture to speed up
multiprocessor architecture research and ease parallel
software simulation. This system had to be a flexible,
inexpensive multiprocessor machine that would provide
reliable, fast simulation results for parallel software and
hardware development and testing.

 A parallel system is presented with more than one
task, known as threads. It is important to spread the
workload over the entire processor, keeping the
difference in idle time as low as possible. To do this, it
is important to coordinate the work and workload
between the processors. Here, it is especially crucial to
consider whether or not some processors are special-
purpose IP cores. To keep a system with N processors
effective, it has to work with N or more threads so that
each processor constantly has something to do.
Furthermore, it is necessary for the processors to be able
to communicate with each other, usually via a shared
memory, where values that other processors can use are
stored. This introduces the new problem of thread
safety. When thread safety is violated, two processors
(working threads) access the same value at the same
time. Some methods for restricting access to shared
resources are necessary. These methods are known as
thread safety or synchronization. Moreover, it is
necessary for each processor to have some private
memory, where the processor does not have to think
about thread safety to speed up the processor. As an
example, each processor needs to have a private stack.
The benefits of having a multiprocessor are as follows:

1. Faster calculations are made possible.

2. A more responsive system is created.

3. Different processors can be utilized for different

 Tasks. In the future, we expect thread and process
parallelism to become widespread for two reasons: the
nature of the Applications and the nature of the
operating system. Researchers have therefore proposed

 FPGA Based Embedded Multiprocessor Architecture

International Journal of Electrical and Electronics Engineering (IJEEE) ISSN (PRINT): 2231 – 5284, Vol-1, Iss-3, 2012

50

two alternatives Micro architectures that exploit
multiple threads of Control: simultaneous
multithreading (SMT) and chip multiprocessors (CMP).
Chip multiprocessors (CMPs) use relatively simple.

 Single-thread processor cores that exploit only
moderate amounts of parallelism within any one thread,
while executing multiple threads in parallel across
multiple processor cores. Wide-issue superscalar
processors exploit instruction level parallelism (ILP) by
executing multiple instructions from a single program in
a single cycle. Multiprocessors (MP) exploit thread-
level parallelism (TLP) by executing different threads in
parallel on Different processors.

III. SOFTWARE TOOL
 The Xilinx Platform Studio (XPS) is used to
designMicro Blaze processors. XPS is a graphical IDE
for developing and debugging hardware and software.
XPS simplifies the procedure to the users, allowing
them to select, interconnect, and configure components
of the final system. Dealing with this activity, the
student learns to add processors and peripherals, to
connect them through buses, to determine the processor
memory extension and allocation, to define and connect
internal and external ports, and to customize the
configuration parameters of the components. Once the
hardware platform is built, the students learn many
concepts about the software layer, such as: assigning
drivers to Peripherals, including libraries, selecting the
operative system (OS), defining processor and drivers
parameters, assigning interruption drivers, establishing
OS and libraries parameters.

 An embedded system performed with XPS can be
Summarized as a conjunction of a Hardware Platform
(HWP) and a Software Platform (SWP), each defined
separately.

A. HARDWARE PLATFORM

 The HWP is described in the Microprocessor
Hardware Specification (MHS) file; it contains the
description of the system architecture, the memory map
and the configuration parameters. HWP can be defined
as one or more processors connected to one or more
peripherals through one or more buses. The definition of
the activity follows this sequence:

• To add processors and peripherals.

• To connect them through buses.

• To determine the processor memory allocation.

• To define and connect internal and external ports.

• To customize the configuration parameters of the
Components.

B. THE SOFTWARE PLATFORM

 The SWP is described in the Microprocessor
Software Specification (MSS) file; it contains the
description of drivers, component libraries,
configuration parameters, standard input/output devices,
interruption routines and other software features. The
sequence of activities needed to define the SWP is the
following:

• To assign drivers to peripherals.

• To assign interruption drivers.

• To establish OS and libraries’ parameters.

• CTo assign Input/output port.

• To assign timers.

• To establish components parameters.

MEMORY

ALUSCHEDULLER

TIMING UNIT
OUTPUTCLK

RESET

ENABLE

Figure 1. Block diagram of Multiprocessor

C. SYSTEM MEMORY

 A system that complies with the MP specification
uses the standard AT memory architecture. All memory
is allocated for system memory with the exception of
addresses 0A_0000h through 0F_FFFFh and
0FFFE_0000h through 0FFFF_FFFFh, which are
reserved for I/O devices and the BIOS. Compared to a
uniprocessor system, a symmetric multiprocessor
system imposes a high demand for memory bus
bandwidth. The demand is proportional to the number of
processors on the memory bus. To reduce memory bus
bandwidth limitations, an implementation of this
specification should use a secondary cache that has
high-performance features, such as a write-back update
policy and a snooping cache-consistency protocol. A
secondary cache can push the scalability limit upward
by reducing bus traffic and increasing bus bandwidth.

 In this form of multiprocessing, each background
process renders its own frame and runs on a separate
processor core (CPU). The number of processes used to
render multiple frames simultaneously is never more
than the number of processors. The number of
background processes that can run on your computer
also depends on the total amount of installed system

 FPGA Based Embedded Multiprocessor Architecture

International Journal of Electrical and Electronics Engineering (IJEEE) ISSN (PRINT): 2231 – 5284, Vol-1, Iss-3, 2012

51

RAM and the amount of RAM that is assigned to the
After Effects application.

D. SCHEDULLER

• To assign drivers to peripherals.

• To assign interruption drivers.

• To establish OS and libraries’ parameters.

• To assign drivers to performs specific tasks.

• To support multiprogramming

• Large numbers of independent processes

• Simplified administration

Figure 2. Proposed architecture of multiprocessor

architecture.

IV. THE MICROBLAZE MULTIPROCESSOR
PROCESSOR

 Micro Blaze is a 32-bit specific purpose processor
Developed by Xilinx in VHDL. It can be parameterized
using XPS to obtain an à-la-carte processor. It is a RISC
processor, structured as Harvard architecture with
separated data and instruction interfaces. Micro Blaze
components are divided into two main groups depending
on their configurability as shown in Fig.1. Some fixed
feature components are:

• 32 general purpose registers sized 32-bit each.

• Instructions with 32 bits word-sized, with 3
operands and 2 addressing modes.

• 32 bits address bus.

• 3-stage Pipeline.

Some of the most important configurable options are:

• An interface with OPB (On-chip Peripheral Bus)
data bus.

• An interface with OPB instruction bus.

• An interface with LMB (Local Memory Bus) data
bus.

• An interface with LMB instruction bus.

• Instruction cache.

• To include EDK libraries.

• To select the operative system (OS).

• To define processor and drivers’ parameters.

• Data cache.

• 8 Fast Simplex Link (FSL bus) Interfaces.

• Cache Link bus support.

• Hardware exception support.

• Floating Point Unit (FPU).

 The suggested core embedded processor contains a
dual-issue, superscalar, pipelined processing unit, Along
with the other functional elements required to
Implement embedded SoC solutions. This other
Functions include memory management and timers.

V. PRACTICAL DESIGNS

 Practical sessions introduce gradual learning,
allowing the fast design based on previous sessions.
Essential problems in hardware programming will be
raised:

• HyperTerminal serial communication.

• Using IO ports.

• Memory controller.

• Interruption routines and priority.

A. Pipeline Architecture

 Micro Blaze Multiprocessor instruction execution is
pipelined. For most instructions, each stage takes one
clock cycle to complete. Consequently, the number of
clock cycles necessary for a specific instruction to
complete is equal to the number of pipeline stages, and
one instruction is completed on every cycle. A few
instructions require multiple clock cycles in the execute
stage to complete. This is achieved by stalling the
pipeline.

 When executing from slower memory, instruction
fetches may take multiple cycles. This additional latency
directly affects the efficiency of the pipeline.
MicroBlaze Multiprocessor implements an instruction
prefetch buffer that reduces the impact of such multi-
cycle instruction memory latency. While the pipeline is
stalled by a multi-cycle instruction in the execution
stage, the prefetch buffer continues to load sequential
instructions. When the pipeline resumes execution, the

 FPGA Based Embedded Multiprocessor Architecture

International Journal of Electrical and Electronics Engineering (IJEEE) ISSN (PRINT): 2231 – 5284, Vol-1, Iss-3, 2012

52

fetch stage can load new instructions directly from the
prefetch buffer instead of waiting for the instruction
memory access to complete.

5-Stage Pipelining

 When area optimization is disabled, the pipeline is
divided into five stages to maximize performance: Fetch
(IF), Decode (OF), Execute (EX), Access Memory
(MEM).

Figure 3. 5-Stage pipelining timing diagram

 Message passing in multiprocessors
communication. The practical content of the subject is
composed of 8 Projects. In the first session, user makes
a basic system which will be used in following sessions
as the base core system. Second and third sessions are
used to introduce the input/output flow and the
communication with external peripheral through the On-
chip Peripheral Bus, for general purpose. SRAM
external memory is added to the system at fourth
session. Next session is dedicated to the External
Memory Controller and how to split the bus. Micro
Blaze interruptions are added in the sixth session, and
external interruptions using the interruption controller
are included in the seventh session. Finally, students
build a biprocessor, using the Fast Simple Link channel
at session eight. In fig. 2.Relation between practices is
shown. For instance, 5th session is based on all previous
sessions, 7th session is based on 3rd and 1st Session

B. Branches

 Normally the instructions in the fetch and decode
stages (as well as prefetch buffer) are flushed when
executing a taken branch. The fetch pipeline stage is
then reloaded with a new instruction from the calculated
branch address. A taken branch in Multiprocessor takes
three clock cycles to execute, two of which are required
for refilling the pipeline. To reduce this latency
overhead, MicroBlaze Multiprocessor supports branches
with delay slots. When executing a taken branch with
delay slot, only the fetch pipeline stage in
Multiprocessor is flushed. The instruction in the decode
stage (branch delay slot) is allowed to complete. This
technique effectively reduces the branch penalty from
two clock cycles to one.

C. Memory Architecture

 MicroBlaze is implemented with Harvard memory
architecture; instruction and data accesses are done in
separate address spaces. Each address space has a 32-bit

range (that is, handles up to 4-GB of instructions and
data memory respectively). The instruction and data
memory ranges can be made to overlap by mapping
them both to the same physical memory. The latter is
useful for software debugging.

 MicroBlaze Multiprocessor does not separate data
accesses to I/O and memory (it uses memory mapped
I/O). The processor has up to three interfaces for
memory accesses:

• Local Memory Bus (LMB)

• Processor Local Bus (PLB) or On-Chip Peripheral
Bus (OPB)

• Xilinx Cache Link (XCL) The LMB memory
address range must not overlap with PLB, OPB or
XCL ranges.

 Memory map, ports and other parameters. In the
following subsection, the steps needed to configure the
system will be described. The parameters shown in this
section depends on the FPGA chip, in this case the
Spartan 3 board [11].

D. Hardware Platform Specifications

 This stage is described in the MHS file. Following,
the Components specified in the structure of the system
are Enumerated:

• Two Micro Blaze processors.

• Two on-chip RAM memory blocks (BRAM), one
for Each processor.

• One UART.

• One OPB bus, to connect the UART with the slave
Processor.

• Two LMB buses to communicate each processor
with their respective data memory controller; and
another Two LMB buses to interconnect the
processors with their instruction memory controller.

Figure 4. Design of Hardware Processor

 FPGA Based Embedded Multiprocessor Architecture

International Journal of Electrical and Electronics Engineering (IJEEE) ISSN (PRINT): 2231 – 5284, Vol-1, Iss-3, 2012

53

 In above diagram we observed the result for
arithmetic operations. It can be depends upon the
Opcode. For logical processor instead of arithmetic
processor we will refer the logical Processor.
 After that, the interconnection of buses and
components is defined. The connection of the memory
ports are also set at this point. The student has to specify
in the connection matrix which components are linked
to which buses and with which kind of connection.

 In the exposed case, four LMB buses are needed to
access local memory, two for each Micro Blaze, because
each processor has its own memory subsystem.

 Also, one FSL channel which connects both
processors. Each BRAM has been designed with 4
different ports. Each Micro Blaze reaches its memory
block through two different interfaces (instructions and
data). After that, it is necessary to map the components
inside the Configuration memory of the processors. XPS
provides a functionality which is able to compute
automatically a valid configuration memory map for a
monoprocessor system structure..

 Most of the internal ones are configured by XPS
with default settings. It is also necessary to define and to
connect some of the internal ports to make the system
works: those ports related to the reset and clock signals
must be forwarded to all of the subsystems and
components. Four external ports are mandatory: clock,
reset, UART in and UART out. With these ports, the
student sends commands and synchronization
Information to the system. Finally, the components are
configured. The parameters for each component and
their meaning are described thoroughly in the
documentation included in the XPS platform.

 Particularly, Micro Blaze includes a parameter
which selects the amount of FSL interfaces used. Thus,
both processors have to set this configuration value to
one to allow the communication between them. The
configuration of this parameter is done by changing
C_FSL_LINKS. This parameter has to be set to a
numerical value, representing the amount of FSL
interfaces to be included in the core.

 Another interesting configuration to be mentioned is
the UART operational configuration. The student has to
determine the operational frequency, the application of
the parity bit checking, working bauds, etc. A valid set
of parameters for the UART and Multiprocessor are the
following:

1) UART parameters.

a) C_CLK_FREQ = 50_000_000. Set the frequency of

the OPB bus, connected to the UART. It has to coincide
with the operational system speed.

b) C_BAUDRATE = 19200. Set the bauds for the

UART. The terminal used to receive characters has to be
configured at the same baud rate.

c) C_USE_PARITY = 0. Set whether the UART should
work with parity bit or not.

VI. SOFTWARE AND HARDWARE
REQUIREMENT

 For Software simulation I will prefer MODELSIM
and for synthesis I will be prefer XILINX. Hardware
requirement is SPARTAN-3.

VII. RESULT VERIFICATION AND ANALYSIS
 Observe the required result like arithmetic, logical,
branching and shifting.

ACKNOWLEDGEMENTS

 Authors wish to remark the great task carried out by
the Xilinx and Modelsim user guide; and the authors
wish to thanks Prof.C.N.Bhoyar for his contribution in
the design process.

REFERENCES

[1] John L. Hennessy and David A. Patterson. Computer
architecture: a quantitative approach. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, fourth edition
2007.

[2] Doug Burger and James R. Goodman. Billion-Transistor
Architectures: There and Back Again. IEEE Computer,
37(3):22– 28, 2004.

[3] David Geer. Industry Trends: Chip Makers Turn to Multicore
Processors. Computer, 38(5):11–13, May,2005.

[4] A Flexible Architecture for Simulation and Testing (FAST)
Multiprocessor Systems. Davis, John D., Hammond, Lance
and Olukotun, Kunle. 2005. s.l. : IEEE Computer Society,
2005. International Symposium on High-Performance
Computer Architecture.

[5] AMD Corporation. Multi-core processors: the next revolution
in computing White paper, 2005.

[6] B. Ackland, A. Anesko, D. Brinthaupt, S.J. Daubert, A.
Kalavade, J. Knobloch, E. Micca, M. Moturi, C.J. Nicol, J.H.
O’Neill, J. Othmer, E. Sackinger, K.J. Singh, J. Sweet, C.J.
Terman, and J. Williams. A Single-chip, 1.6-billion, 16-b
MAC/s Multiprocessor IEEE Journal of, 35(3):412–424, Mar
2000.

 FPGA Based Embedded Multiprocessor Architecture

International Journal of Electrical and Electronics Engineering (IJEEE) ISSN (PRINT): 2231 – 5284, Vol-1, Iss-3, 2012

54

[7] A. Burns and A. Wellings. Real-Time Systems and
Programming Languages.Addison-Wesley, third edition,
2001.

[8] Asawaree Kalavade, Joe Othmer, Bryan Ackland, and K. J.
Singh. Software environment for a multiprocessor DSP. In
DAC ’99: Proceedings of the 36th ACM/IEEE conference
on Design automation, pages 827–830, New York, NY, USA,
1999. ACM..

[9] V. Sklyarov, and I. Skliarova. “Teaching Reconfigurable
Systems: Methods, Tools, Tutorials, and Projects,” IEEE
Trans. on Education, vol. 48, no. 2, 290–300, 2005.

[10] OpenSPARC http://www. opensparc.net/edu/ university-
program.html.Last accessed on 8th November 2009.

[11] “Platform Studio User Guide,” Application notes, Xilinx,
2005.

[12] “Microblaze Processor Reference Guide,” Application notes,
Xilinx, 2005.

[13] “Embedded System Tools Reference Manual,” Application
notes, Xilinx, 2008.

[14] “OS and Libraries Document Collection,” Xilinx,
Application notes, September 2007.

[15] Spartan-3 Board. http://www.digilentinc.com/ . Last accessed
on 30th October 2009.

