
EXTERNAL INTERRUPTS HANDLING IN
8051

In this article, I would like to introduce you to the concept of interrupts, how interrupts work, vector

address, interrupt priority and how to write an ISR (interrupt service routine).

“Interruption” in English language means a deviation from the normal routine. We know the

processor is always busy executing some kind of instructions. What if there occurs an urgent

condition that we need to pause the processor from its current activities for some time and make it

execute/do something else? Also we need to resume the processor back to its operations after

executing our “urgent condition”. To meet such a demand, 8051 micro controller has got a system

called “Interrupts”. An interrupt is usually a signal from the external world or a command from the

internal program (called software interrupt), which forces the processor to pause its current activities

and then jump to another location to execute another set of predefined activities. While doing so the

processor will save its currents status and location to a temporary storage area (to resume the current

activities after finishing the interrupt). The process of jumping to another location, after receiving the

interrupt signal is known as“servicing the interrupt”.

Interrupt sources
In an 8051 micro controller there are 2 external interrupts, 2 timer interrupts, and 1 serial interrupt.

External interrupts are – external interrupt 0(INT0) and external interrupt 1 (INT1). Timer interrupts

are Timer 0 interrupt and Timer 1 interrupt. A serial interrupt is given for serial communication with

the micro controller (transmit and receive) .

All these four interrupts, when evoked serves or executes a particular set of predefined activities

known as“Interrupt Service Routines”. It’s way of functioning is similar to the “subroutines” we

write while developing a complete program. In the case of 8051, the interrupt service routines(ISR)

of each interrupt must begin from a corresponding address in the program memory. This address

from which an ISR begins is called the vector address of the interrupt.

Interrupt Source Vector address Interrupt priority

External Interrupt 0 –INT0 0003H 1

Timer 0 Interrupt 000BH 2

External Interrupt 1 –INT1 0013H 3

Timer 1 Interrupt 001BH 4

Serial Interrupt 0023H 5

Interrupt Priority
All the 5 interrupts of 8051 has got different priorities. Interrupts are serviced according to it’s

priority order. From the table above, you can see that INT0 has the highest priority of 1 and Timer 0

comes next with priority value 2. The order of priority works like this – consider a case where two

interrupts are raised at the same time – one from INT0 and another from Timer 1 interrupt. Now

which one would be served first? In such a case, processor would serve the interrupt according to it’s

priority. In our case INT0 is of high priority (priority order 1)and Timer 1 interrupt is of low priority

(priority order 4). So processor will execute ISR of INTO first and then later,after finishing ISR of

INT0, processor will begin executing ISR of Timer 1 interrupt.

From the figure above, you may note that INTO is an alternate function P3.2 and INT1 is an alternate

function of P3.3. A signal received at these pins will evoke the interrupts accordingly. But not all

signals will evoke the interrupt! The signal received at pins should be either a low level one or it

should be a falling edge signal to evoke the corresponding interrupt. However to serve the interrupt

upon receiving the signal at pins, the man who programs 8051 should preprocess a few bits 3 SFR’s

namely TCON, IE and IP. Let’s examine them.

TCON

TCON is a bit addressable SFR. Out of the 8 bits, only the lower 4 bits are concerned with external

interrupts. The upper 4 bits deals with interrupts from Timers. The lower four bits are TCON.0 (IT0),

TCON.1 (IE0), TCON.2 (IT1) and TCON.3 (IE1). You can refer the figure given below for a better

understanding. Out of these 4 bits, bits 0 and 1 – that means – TCON.0 and TCON.1 are concerned

with external interrupt 0 (INT0), where as bits 2 and 3 – TCON.2 and TCON.3 are concerned with

external interrupt 1 (INT1). Out of these bits only TCON.0 and TCON.2 are directly manipulated by

the programmer while dealing with an external interrupt. Bits TCON.1 (IE0) and TCON.3 (IE1) are

manipulated by the processor itself. An external signal received at INTO would set the bit TCON.1

(also known as IE0) and will be cleared by the processor itself, after it branches to the corresponding

ISR located at 0003H. Similarly TCON.3 is set when an interrupt signal is received at INT1 and

would be cleared by processor after branching. The other 2 bits TCON.0 and TCON.2 are used for

selecting “type of signal” received.

TCON.0 (or IT0) is set to 0 – if the interrupt at INT0 is to be evoked by a low level signal. If

TCON.0 is set to high, then the interrupt at INT0 would be evoked by a falling edge signal (high to

low transition). Same is the case with TCON.1 – if set to 0 then low level signal would raise an

interrupt at INT1 and if set to high, then a falling edge signal would do the job.

IE (Interrupt Enable)

http://www.circuitstoday.com/wp-content/uploads/2012/06/tcon-register-8051.png

There are 3 bits associated with external interrupts in IE – they are bits 0,2 and 7. The main purpose

of this SFR is to enable/disable different interrupts based on whether it’s corresponding bits are set or

not. Refer the figure below.

IE.7 – is known as global interrupt bit – which when set to ’0′ – disables all kinds of interrupts in

8051. Only if this bit is set to ’1″, any kind of interrupt would be enabled in 8051. If this bit is set to

1, programmer can then individually enable or disable all other interrupts INT0, INT1, Timer

interrupts (0 and 1) and serial interrupt.

IE.0 – If set to ’1′ – it enables INT0 and if set to ’0′ – INT0 would be disabled. So in order to enable

external interrupt 0 (INT0) – IE.7 and IE.0 should be set to ’1′.

IE.2 – Similar to IE.0 – IE.1 enables/disables external interrupt 1 (INT1).

Interrupt Priority (IP)

http://www.circuitstoday.com/wp-content/uploads/2012/06/ie-register-8051.png

Basic function of this SFR is to set interrupt priority (IP). By default INT0 is of priority value 1

(which is the highest) and INT1 is of priority value 3 (which is lower than INT0). The programmer

can alter this priority, if he wants! If IP.0 is set to ’0′ and then IP.2 is set to ’0′ – then the priority

order changes. INT1 will change to high priority and INT0 will change to lower priority compared to

INT1.

How to write an ISR (Interrupt Service Routine)
An ISR is just like any other subroutine we write inside a program, except for the difference that an

ISR must always end with a RETI instruction and not with a RET instruction (as in the case of

subroutines). An ISR when evoked, executes a certain lines of code that does some kind of

operations. It can be anything as defined by the programmer. The only condition is that the first line

of ISR must begin from the corresponding vector address. Vector address of INT0 is 0003H and that

of INT1 is 0013H.

Note: In some cases the ISR will be too long that it wont be practical to write all codes staring from

0003H or the other vector address. In such cases, ISR can be placed at any other location in program

memory and programmer must provide an unconditional jump to the starting address of ISR from the

corresponding vector address.Example:- The ISR of INT0 has been written from location 2000H.

Now programmer must place an instruction – ‘LJMP 2000H’ at the vector address of INT0 – 0003H.

Note:- Whenever an evoked interrupt is acknowledged and the processor branches to its

corresponding vector address, it automatically disables the interrupt in IE register. This disabled

interrupt would only be re-enabled upon executing the RETI instruction placed inside the ISR. That

http://www.circuitstoday.com/wp-content/uploads/2012/06/ip-register.png

is the single reason, a programmer must use RETI inside an ISR instead of RET

instruction. Placing RET will also do the job of returning from interrupt routine to main program

(the calling program) but the RET instruction will not re-enable the disabled interrupt in IE register.

So if an RET is used, the interrupt would be permanently disabled after its first serving of ISR

(unless it is enabled again by the programmer at some other part of the same program).

So in order to write an ISR for INT0, you have to keep in mind the following things:-

1) Place the ISR for INT0 beginning from its vector address – 0003H. If the ISR is too long, place an

unconditional jump from 0003H to the starting address of ISR (which is placed at some other

location of program memory). The ISR must end with a RETI instruction.

2) Select the triggering signal type of interrupt by setting/clearing TCON.0 bit. TCON.0=1 – means

interrupt would be triggered by a falling edge signal. TCON.0 =0 – means interrupt would be

triggered by a low level signal.

3)Set IE.0 =1 to enable the external interrupt 0 (INT0)

4)Set IE.7=1 – to enable the global interrupt control bit.

5) Optionally, programmer can alter the priority of INT0 by setting/clearing IP.0 (Note: This step is

optional.)

Now when it comes to external interrupt 1 – INT1 – the processes are all same, except for the
change in bits that are to be programmed.

1) Place the ISR in vector address of INT1 – 0013H. Or if the ISR is long, place an LJMP at 0013H

to the corresponding starting address of ISR for INT1.

2)Triggering signal type is selected by setting/clearing TCON.2. TCON.2 = 0 – triggered by low

level signal. TCON.2 = 1 – triggered by falling edge signal.

3)Set IE.2 = 1 to enable INT1

4) Set IE.7 =1 to enable global interrupt control bit.

5) Interrupt priority can be altered by changing value of IP.2 (optional). Refer the diagram of IP

register given above.

How to generate Software Interrupts in 8051?
Software interrupts are nothing but an interrupt generated by a program inside the controller. To

generate an external interrupt, we need a signal input either at INT0 or INT1 pin of the 8051 micro

controller. We have seen that, when an interrupt signal is received at the INTo pin, the TCON.1 bit

would automatically get set and that is how the processor knows an interrupt signal has been received

at INT0 pin. When TCON.1 is set, processor would immediately acknowledge the interrupt and

branch to the corresponding ISR of INT0. While branching to the ISR, processor would also clear the

TCON.1 bit. The same happens in the case of INT1 and the associated bit is TCON.3.

Now in order to generate a software interrupt, the programmer can manipulate these bits TCON.1

and TCON.3 manually inside a program. An instruction like ‘SETB TCON.1′ will activate the

interrupt for INT0 (without any external signal at the INT0 pin) inside the controller. Now the

processor will acknowledge the interrupt and branch to the corresponding location of ISR for INT0

(vector address 0003H). After branching to ISR, the processor would clear the bit TCON.1. An

instruction like ‘SETB TCON.3‘ would activate the interrupt for INT1 and processor would branch

to ISR of INT1 located at vector address 0013H. While branching it would automatically clear the bit

TCON.3, so that the programmer can activate the interrupt again inside a loop or some other part of

the program

Parithy
Typewritten Text
Source : http://www.circuitstoday.com/external-interrupts-handling-in-8051

	EXTERNAL INTERRUPTS HANDLING IN 8051
	Interrupt sources
	Interrupt Priority
	TCON
	IE (Interrupt Enable)
	Interrupt Priority (IP)
	How to write an ISR (Interrupt Service Routine)
	So in order to write an ISR for INT0, you have to keep in mind the following things:-
	Now when it comes to external interrupt 1 – INT1 – the processes are all same, except for the change in bits that are to be programmed.

	How to generate Software Interrupts in 8051?

