
Design of AMBA AXI4 protocol for System-on-Chip communication

38
International Journal of Communication Network and Security (IJCNS), Vol-1, Issue-3 ISSN: 2231-1882

Design of AMBA AXI4 protocol for System-on-Chip communication

Shaila S Math and Manjula R B
Dept. of ECE,

REVA Institute of Technology and Management, Bangalore, India.
shaila.s.math@gmail.com and manjularb@rediffmail.com

Abstract— Advanced microcontroller bus architecture (AMBA)
protocol family provides metric-driven verification of protocol
compliance, enabling comprehensive testing of interface
intellectual property (IP) blocks and system-on-chip (SoC)
designs. The AMBA advanced extensible interface 4 (AXI4)
update to AMBA AXI3 includes the following: support for burst
lengths up to 256 beats, updated write response requirements,
removal of locked transactions and AXI4 also includes
information on the interoperability of components. AMBA AXI4
protocol system supports 16 masters and 16 slaves interfacing.
This paper presents a work aimed to design the AMBA AXI4
protocol modeled in Verilog hardware description language
(HDL) and simulation results for read and write operation of
data and address are shown in Verilog compiler simulator (VCS)
tool. The operating frequency is set to 100MHz. Two test cases
are run to perform multiple read and multiple write operations.
To perform single read operation module takes 160ns and for
single write operation it takes 565ns.

Keywords- System-on-chip(SoC), Intellactual Property (IP),
AMBA, AXI, VCS, Verilog.

I. INTRODUCTION
In recent years due to the miniaturization of semiconductor

process technology and computation for survival in the current
market conditions constant customization is required. The
semiconductor process technology is changing at a faster pace
during 1971 semiconductor process technology was 10µm,
during 2010 the technology is reduced to 32nm and future is
promising for a process technology with 10nm. Intel, Toshiba
and Samsung have reported that the process technology would
be further reduced to 10nm in the future. So with decreasing
process technology and increasing consumer design
constraints SoC has evolved, where all the functional units of
a system are modelled on a single chip.

SoC buses [1] are used to interconnect an Intellectual
Property (IP) core to the surrounding interface. These are not
real buses, but they reside in Field Programmable Gate Array
(FPGA). The AMBA [2] data bus width can be 32, 64, 128 or
256 byte, address bus width will be 32bits wide. The AMBA
AXI4 [3] specification to interconnect different modules in a
SoC was released in March 2010.

A. AMBA AXI4 architecture
AMBA AXI4 [3] supports data transfers up to 256 beats

and unaligned data transfers using byte strobes. In AMBA
AXI4 system 16 masters and 16 slaves are interfaced. Each
master and slave has their own 4 bit ID tags. AMBA AXI4
system consists of master, slave and bus (arbiters and
decoders). The system consists of five channels namely write

address channel, write data channel, read data channel, read
address channel, and write response channel. The AXI4
protocol supports the following mechanisms:

• Unaligned data transfers and up-dated write response
requirements.

• Variable-length bursts, from 1 to 16 data transfers per
burst.

• A burst with a transfer size of 8, 16, 32, 64, 128, 256,
512 or 1024 bits wide is supported.

• Updated AWCACHE and ARCACHE signalling
details.
Each transaction is burst-based which has address

and control information on the address channel that describes
the nature of the data to be transferred. The data is transferred
between master and slave using a write data channel to the
slave or a read data channel to the master. Table 1[3] gives the
information of signals used in the complete design of the
protocol.

The write operation process starts when the master
sends an address and control information on the write address
channel as shown in fig. 1. The master then sends each item of
write data over the write data channel. The master keeps the
VALID signal low until the write data is available. The master
sends the last data item, the WLAST signal goes HIGH. When
the slave has accepted all the data items, it drives a write
response signal BRESP[1:0] back to the master to indicate that
the write transaction is complete. This signal indicates the
status of the write transaction. The allowable responses are
OKAY, EXOKAY, SLVERR, and DECERR.

After the read address appears on the address bus, the
data transfer occurs on the read data channel as shown in fig.
2. The slave keeps the VALID signal LOW until the read data
is available. For the final data transfer of the burst, the slave
asserts the RLAST signal to show that the last data item is
being transferred. The RRESP[1:0] signal indicates the status
of the read transfer. The allowable responses are OKAY,
EXOKAY, SLVERR, and DECERR.

Figure 1: Write address and data burst.

Design of AMBA AXI4 protocol for System-on-Chip communication

39
International Journal of Communication Network and Security (IJCNS), Vol-1, Issue-3 ISSN: 2231-1882

Figure 2: Read address and data burst.

TABLE 1: Signal descriptions of AMBA AXI4 protocol.

Signal
Source:
master/
slave

Input/
Output Description

Aclk Global Input Global clock
signal.

AResetn Global Input Global reset signal
AWID[3:0] Master Input Write address ID.
AWADDR[31:0] Master Input Write address.
AWLEN[3:0] Master Input Write burst length.
AWSIZE[2:0] Master Input Write burst size.
AWBURST[1:0] Master Input Write burst type.
AWLOCK[1:0] Master Input Write lock type.
AWCACHE[3:0] Master Input Write cache type.

AWPROT[2:0] Master Input Write protection
type.

WDATA[31:0] Master Input Write data.
ARID[3:0] Master Input Read address ID.
ARADDR[31:0] Master Input Read address.
ARLEN[3:0] Master Input Read Burst length.
ARSIZE[2:0] Master Input Read Burst size.
ARLOCK[1:0] Master Input Read Lock type.
ARCACHE[3:0] Master Input Read Cache type.

ARPROT[2:0] Master Input Read Protection
type.

RDATA[31:0] Master Input Read data.
WLAST Master Input Write last.
RLAST Slave Output Read last.

AWVALID Master Output Write address
valid.

AWREADY Slave Output Write address
ready.

WVALID Master Output Write valid.
RAVLID Slave Output Read valid.
WREADY Slave Output Write ready.

BID[3:0] Slave Output Write Response
ID.

RID[3:0] Slave Output Read response ID.
BRESP[1:0] Slave Output Write response.
RRESP[1:0] Slave Output Read response.

BVALID Slave Output Write response
valid.

BREADY Master Output Response ready.
RVALID Slave Output Read valid.

The protocol supports 16 outstanding transactions, so

each read and write transactions have ARID[3:0] and AWID
[3:0] tags respectively. Once the read and write operation gets
completed the module produces a RID[3:0] and BID[3:0] tags.
If both the ID tags match, it indicates that the module has
responded to right operation of ID tags. ID tags are needed for
any operation because for each transaction concatenated input
values are passed to module.

B. Comparison of AMBA AXI3 and AXI4
AMBA AXI3 protocol has separate address/control

and data phases, but AXI4 has updated write response
requirements and updated AWCACHE and ARCACHE
signaling details. AMBA AXI4 protocol supports for burst
lengths up to 256 beats and Quality of Service (QoS)
signaling. AXI4 has additional information on Ordering
requirements and details of optional user signaling. AXI3 has
the ability to issue multiple outstanding addresses and out-of-
order transaction completion, but AXI4 has the ability of
removal of locked transactions and write interleaving. One
major up-dation seen in AXI4 is that, it includes information
on the use of default signaling and discusses the
interoperability of components which can’t be seen in AXI3.

In this paper features of AMBA AXI4 listed above
are designed and verified. The rest of the paper is organized as
follows: Section 2 discusses related work. Section 3 of this
paper, discusses proposed work. In Section 4, simulation
parameters are discussed. Section 5 discusses results. Future
scope and concluding remarks are given in Section 6.

II. RELATED WORK
In a SoC, it houses many components and electronic

modules, to interconnect these a bus is necessary. There are
many buses introduced in the due course some of them being
AMBA [2] developed by ARM, CORE CONNECT [4]
developed by IBM, WISHBONE [5] developed by Silicore
Corporation, etc. Different buses have their own properties the
designer selects the bus best suited for his application.
 The AMBA bus was introduced by ARM Ltd in 1996
which is a registered trademark of ARM Ltd. Later advanced
system bus (ASB) and advanced peripheral bus (APB) were
released in 1995, AHB in 1999, and AXI in 2003[6].

AMBA bus finds application in wide area. AMBA
AXI bus is used to reduce the precharge time using dynamic
SDRAM access scheduler (DSAS) [7]. Here the memory
controller is capable of predicting future operations thus
throughput is improved.

Efficient Bus Interface (EBI) [8] is designed for
mobile systems to reduce the required memory to be
transferred to the IP, through AMBA3 AXI. The advantages of
introducing Network-on-chip (NoC) within SoC such as
quality of signal, dynamic routing, and communication links
was discussed in [9].
 To verify on-chip communication properties rule based
synthesizable AMBA AXI protocol checker [10] is used.

III. PROPOSED WORK
The work carried out in this project is the achievement of

communication between one master and one slave. AMBA
AXI4 slave is designed with operating frequency of 100MHz,
which gives each clock cycle of duration 10ns. To access slave
interconnect is needed, hence interconnect signals are also
studied. Master block functions are assumed to be available
and the slave characteristics are studied. The AMBA AXI4
system components consists of

Design of AMBA AXI4 protocol for System-on-Chip communication

40
International Journal of Communication Network and Security (IJCNS), Vol-1, Issue-3 ISSN: 2231-1882

1) Master
2) AMBA AXI4 Interconnect

2.1) Arbiters
2.2) Decoders

3) Slave

The master is connected to the interconnect using a slave
interface and the slave is connected to the interconnect using a
master interface as shown in fig. 3. The AXI4 master gets
connected to the AXI4 slave interface port of the interconnect
and the AXI slave gets connected to the AXI4 Master
interface port of the interconnect. The parallel capability of
this interconnects enables master M1 to access one slave at the
same as master M0 is accessing the other.

Figure 3: Block diagram of AMBA AXI4 bus interconnect.

A. AMBA AXI4 master
To perform write address and data operation the

transaction is initiated with concatenated input of [awaddr,
awid, awcache, awlock, awprot, awburst]. On the same lines
for read address and data operations the concatenated input is
[araddr, arid, arcache, arlock, arprot, arburst]. The addresses
of read and write operations are validated by VALID signals
and sent to interface unit.

B. AMBA AXI4 Interconnect
The interconnect block consists of arbiter and decoder.

When two masters initiate a transaction simultaneously, the
arbiter gives priority to access the bus. The decoder decodes
the address sent by master and the control goes to one slave
out of 16. The AMBA AXI interface decoder is centralized
digital block. The decoder decodes the address sent by master
and goes to one slave out of 16. 0-150 locations are meant for
slave-1, next 151-300 addressable locations are meant for
slave-2,… and so on till slave-16.

C. AMBA AXI4 slave read/write block diagram
The AXI4 slave consists of common read/ write buffer

which stores the read/ write address and data as shown in fig. 4.

Pending read address register stores the remaining read
addresses to be sent; pending write address register which
stores the remaining write addresses to be sent and pending
write data register which stores the remaining write data to be
sent. The read/write state machines receive internal inputs from
the read/ write buffer. The AXI4 slave test bench initiates the
read or write transaction and the output from the AXI4 slave
are standard read/write channel signals. The AXI4 slave
receives the write data in the same order as address.

Signals used to design slave module is shown in fig. 5. The
test layer shown in the fig. 5 has 2 test cases. The test case 1:-
for multiple read operations and case 2:- for multiple write
operations.

Figure 4: AMBA AXI4 slave Read/Write block Diagram.

Figure 5: Signals used to design AMBA AXI4 interconnect and slave.

IV. SIMULATION
Simulation is being carried out on VCS tool [11] which is

trademark of Synopsys, using Verilog [12] as programming
language. The test case is run for multiple operations and the
waveforms are visible in discovery visualization environment
(DVE).

Design of AMBA AXI4 protocol for System-on-Chip communication

41
International Journal of Communication Network and Security (IJCNS), Vol-1, Issue-3 ISSN: 2231-1882

A. Simulation inputs
To perform multiple write and read operations, the
concatenated input format and their values passed to invoke a
function is shown in the fig. 6 and 7 respectively. Here the
normal type of the burst is passed to module. Internal_lock
value is 0, internal_burst value is 1 and internal_prot value is
1,for both read and write operations, which indicate that the
burst is of normal type. For write operation address locations
passed to module are 40, 12, 35, 42 and 102; for read
operations 45, 12, 67 and 98.

Figure 6: Interface declaration and write function invocation.

Figure 7: Interface declaration and read function invocation.

B. Simulation outputs
The simulation output signals generated are as follows:

• From input side the validating signals
AWVALID/ARVALID signals are generated by
interconnect which gives the information about valid
address and ID tags.

• For write operations BRESP[1:0] response signal
generated from slave indicates the status of the write
transaction. The allowable responses are OKAY,
EXOKAY, SLERR, and DECERR.

• For read operations RLAST signal is raised by slave
for every transaction which indicates the completion
of operation.

V. RESULTS
Simulation is carried out in VCS tool and Verilog is used as

programming language.

A. Simulation result for write operation
The AResetn signal is active low. Master drives the

address, and the slave accepts it one cycle later.
The write address values passed to module are 40, 12, 35,

42 and 102 as shown in fig. 8 and the simulated result for
single write data operation is shown in fig. 9. Input
AWID[3:0] value is 11 for 40 address location, which is same
as the BID[3:0] signal for 40 address location which is

identification tag of the write response. The BID[3:0] value is
matching with the AWID[3:0] value of the write transaction
which indicates the slave is responding correctly. BRESP[1:0]
signal that is write response signal from slave is 0 which
indicates OKAY. Simulation result of slave for multiple write
data operation is shown in fig. 10.

Figure 8: Simulation result of slave for write address operation.

Figure 9: Simulation result of slave for single write data operation.

Figure 10: Simulation result of slave for multiple write data operation.

B. Simulation result for read operation
The read address values passed to module are 45, 12, 67,

98 as shown in fig. 11 and the simulated result for single read
data operation is shown in fig. 12.

Design of AMBA AXI4 protocol for System-on-Chip communication

42
International Journal of Communication Network and Security (IJCNS), Vol-1, Issue-3 ISSN: 2231-1882

Figure 11: Simulation result of slave for read address operation.

Input ARID[3:0] value is 3 for 12 address location, which

is same as the RID[3:0] signal for 12 address location which is
identification tag of the write response. The RID[3:0] and
ARID[3:0] values are matching, which indicates slave has
responded properly. RLAST signal from slave indicates the
last transfer in a read burst. Simulation result of slave for
multiple read data operation is shown in fig. 13.

Figure 12: Simulation result of slave for single read data operation.

Figure 13: Simulation result of slave for multiple read data operation.

VI. CONCLUSION AND FUTURE SCOPE

A. Future scope
The AMBA AXI4 has limitations with respect to the

burst data and beats of information to be transferred. The burst
must not cross the 4k boundary. Bursts longer than 16 beats
are only supported for the INCR burst type. Both WRAP and

FIXED burst types remain constrained to a maximum burst
length of 16 beats. These are the drawbacks of AMBA AXI4
system which need to be overcome.

B. Conclusion
AMBA AXI4 is a plug and play IP protocol released

by ARM, defines both bus specification and a technology
independent methodology for designing, implementing and
testing customized high-integration embedded interfaces. The
data to be read or written to the slave is assumed to be given
by the master and is read or written to a particular address
location of slave through decoder. In this work, slave was
modeled in Verilog with operating frequency of 100MHz and
simulation results were shown in VCS tool. To perform single
read operation it consumed 160ns and for single write
operation 565ns.

REFERENCES

[1] Shaila S Math, Manjula R B, “Survey of system on chip buses based on
industry standards”, Conference on Evolutionary Trends in Information
Technology(CETIT), Bekgaum,Karnataka, India, pp. 52, May 2011

[2] ARM, AMBA Specifications (Rev2.0). [Online]. Available at
http://www.arm.com, 1999

[3] ARM, AMBA AXI Protocol Specification (Rev 2.0). [Online].
Available at http://www.arm.com, March 2010

[4] IBM, Core connect bus architecture. IBM Microelectronics. [Online].
Available: http://www.ibm.com/chips/products/coreconnect, 2000

[5] Silicore Corporation, Wishbone system-on-chip (soc) interconnection
architecture for portable ip cores, (Rev B.3). [Online]. Available at
http://www.opencores.org/projects.cgi/web/wishbone/wishbone, Sept
2002

[6] ARM, AMBA AXI protocol specifications, Available at,
http://www.arm.com, 2003

[7] Jun Zheng, Kang Sun , Xuezeng Pan, and Lingdi Ping “Design of a
Dynamic Memory Access Scheduler”, IEEE transl, Vol 7, pp. 20-23,
2007

[8] Na Ra Yang, Gilsang Yoon, Jeonghwan Lee, Intae Hwang, Cheol
Hong Kim, Sung Woo Chung and Jong Myon Kim, “Improving the
System-on-a-Chip Performance for Mobile Systems by Using Efficient
Bus Interface”, IEEE transl, International Conference on
Communications and Mobile Computing, Vol 4, pp. 606-608, March
2009

[9] Bruce Mathewson “The Evolution of SOC Interconnect and How NOC
Fits Within It”, IEEE transl, DAC,2010, California, USA,Vol 6, pp.
312-313, June 2010

[10] Chien-Hung Chen, Jiun-Cheng Ju, and Ing-Jer Huang, “A Synthesizable
AXI Protocol Checker for SoC Integration”, IEEE transl, ISOCC, Vol 8,
pp.103-106, 2010

[11] Synopsys, VCS / VCSi User Guide Version 10.3[Online]. Available at,
www.synopsys.com, 2005

[12] Samir Palnitkar, Verilog HDL: A Guide to Digital Design and synthesis,
2nd ed, Prentice Hall PTR Pub, 2003

