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After reading this lesson, you will learn about 
 Basic concepts of Convolutional Codes; 
 State Diagram Representation; 
 Tree Diagram Representation; 
 Trellis Diagram Representation; 
 Catastrophic Convolutional Code; 
 Hard - Decision Viterbi Algorithm; 
 Soft - Decision Viterbi Algorithm; 

 
 Convolutional codes are commonly described using two parameters: the code rate 
and the constraint length. The code rate, k/n, is expressed as a ratio of the number of bits 
into the convolutional encoder (k) to the number of channel symbols output by the 
convolutional encoder (n) in a given encoder cycle. The constraint length parameter, K, 
denotes the "length" of the convolutional encoder, i.e. how many k-bit stages are 
available to feed the combinatorial logic that produces the output symbols. Closely 
related to K is the parameter m, which indicates how many encoder cycles an input bit is 
retained and used for encoding after it first appears at the input to the convolutional 
encoder. The m parameter can be thought of as the memory length of the encoder. 
 
 Convolutional codes are widely used as channel codes in practical communication 
systems for error correction. The encoded bits depend on the current k input bits and a 
few past input bits. The main decoding strategy for convolutional codes is based on the 
widely used Viterbi algorithm. As a result of the wide acceptance of convolutional codes, 
there have been several approaches to modify and extend this basic coding scheme. 
Trellis coded modulation (TCM) and turbo codes are two such examples. In TCM, 
redundancy is added by combining coding and modulation into a single operation. This is 
achieved without any reduction in data rate or expansion in bandwidth as required by 
only error correcting coding schemes. 
 
 A simple convolutional encoder is shown in Fig. 6.35.1. The information bits are 
fed in small groups of k-bits at a time to a shift register. The output encoded bits are 
obtained by modulo-2 addition (EXCLUSIVE-OR operation) of the input information 
bits and the contents of the shift registers which are a few previous information bits. 
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Fig. 6.35.1 A convolutional encoder with k=1, n=2 and  r=1/2 
 

If the encoder generates a group of ‘n’ encoded bits per group of ‘k’ information 
bits, the code rate R is commonly defined as R = k/n. In Fig. 6.35.1, k = 1 and n = 2. The 
number, K of elements in the shift register which decides for how many codewords one 
information bit will affect the encoder output, is known as the constraint length of the 
code. For the present example, K = 3. 

 
 The shift register of the encoder is initialized to all-zero-state before encoding 

operation starts. It is easy to verify that encoded sequence is 00 11 10 00 01 ….for an 
input message sequence of 01011….  

 
The operation of a convolutional encoder can be explained in several but 

equivalent ways such as, by a) state diagram representation, b) tree diagram 
representation and c) trellis diagram representation. 

 
a) State Diagram Representation 

A convolutional encoder may be defined as a finite state machine. Contents of the 
rightmost (K-1) shift register stages define the states of the encoder. So, the encoder in 
Fig. 6.35.1 has four states. The transition of an encoder from one state to another, as 
caused by input bits, is depicted in the state diagram. Fig. 6.35.2 shows the state diagram 
of the encoder in Fig. 6.35.1. A new input bit causes a transition from one state to 
another. The path information between the states, denoted as b/c1c2, represents input 
information bit ‘b’ and the corresponding output bits (c1c2). Again, it is not difficult to 
verify from the state diagram that an input information sequence b = (1011) generates an 
encoded sequence c = (11, 10, 00, 01). 
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Fig.6.35.2 State diagram representation for the encoder in Fig. 6.35.1 
 
b) Tree Diagram Representation 

The tree diagram representation shows all possible information and encoded 
sequences for the convolutional encoder. Fig. 6.35.3 shows the tree diagram for the 
encoder in Fig. 6.35.1. The encoded bits are labeled on the branches of the tree. Given an 
input sequence, the encoded sequence can be directly read from the tree. As an example, 
an input sequence (1011) results in the encoded sequence (11, 10, 00, 01).  
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Fig. 6.35.3 A tree diagram for the encoder in Fig. 6.35.1 
 
c) Trellis Diagram Representation 

The trellis diagram of a convolutional code is obtained from its state diagram. All 
state transitions at each time step are explicitly shown in the diagram to retain the time 
dimension, as is present in the corresponding tree diagram. Usually, supporting 
descriptions on state transitions, corresponding input and output bits etc. are labeled in 
the trellis diagram. It is interesting to note that the trellis diagram, which describes the 
operation of the encoder, is very convenient for describing the behavior of the 
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corresponding decoder, especially when the famous ‘Viterbi Algorithm (VA)’ is 
followed. Figure 6.35.4 shows the trellis diagram for the encoder in Figure 6.35.1. 
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Fig.6.35.4(a) Trellis diagram for the encoder in Fig. 6.35.1 
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Fig.6.35.4(b) Trellis diagram, used in the decoder corresponding to  the encoder in Fig. 
6.35.1 
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Catastrophic Convolutional Code 
The taps of shift registers used for a convolutional encoder are to be chosen 

carefully so that the code can effectively correct errors in received data stream. One 
measure of error correction capability of a convolutional code is its ‘minimum free 
distance, dfree’, which indicates the minimum weight (counted in number of ‘1’-s) of a 
path that branches out from the all-zero path of the code trellis and again merges with the 
all-zero path. For example, the code in Fig.6.35.1 has dfree= 5. Most of the convolutional 
codes of present interest are good for correcting random errors rather than correcting 
error bursts. If we assume that sufficient number of bits in a received bit sequence are 
error free and then a few bits are erroneous randomly, the decoder is likely to correct 
these errors. It is expected that (following a hard decision decoding approach, explained 
later) the decoder will correct up to (dfree-1)/2 errors in case of such events. So, the taps of 
a convolutional code should be chosen to maximize dfree. There is no unique method of 
finding such convolutional codes of arbitrary rate and constraint length that ensures 
maximum dfree. However, comprehensive description of taps for ‘good ‘ convolutional 
codes of practical interest have been prepared through extensive computer search 
techniques and otherwise. 

 
While choosing a convolutional code, one should also avoid ‘catastrophic 

convolutional code’. Such codes can be identified by the state diagram. The state diagram 
of a ‘catastrophic convolutional code’ includes at least one loop in which a nonzero 
information sequence corresponds to an all-zero output sequence. Tree diagram of a 
‘catastrophic convolutional code’ is shown in Fig.6.35.5. 
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Fig.6.35.5 Example of a catastrophic code 
 
Hard-Decision and Soft-Decision Decoding 

Hard-decision and soft-decision decoding are based on the type of quantization 
used on the received bits. Hard-decision decoding uses 1-bit quantization on the received 
samples. Soft-decision decoding uses multi-bit quantization (e.g. 3 bits/sample) on the 
received sample values.  
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Hard-Decision Viterbi Algorithm 
 The Viterbi Algorithm (VA) finds a maximum likelihood (ML) estimate of a  
transmitted code sequence c from the corresponding received sequence r by maximizing 
the probability p(r|c) that sequence r is received conditioned on the estimated code 
sequence c. Sequence c must be a valid coded sequence. 
 
 The Viterbi algorithm utilizes the trellis diagram to compute the path metrics. The 
channel is assumed to be memory less, i.e. the noise sample affecting a received bit is 
independent from the noise sample affecting the other bits. The decoding operation starts 
from state ‘00’, i.e. with the assumption that the initial state of the encoder is ‘00’. With 
receipt of one noisy codeword, the decoding operation progresses by one step deeper into 
the trellis diagram. The branches, associated with a state of the trellis tell us about the 
corresponding codewords that the encoder may generate starting from this state. Hence, 
upon receipt of a codeword, it is possible to note the ‘branch metric’ of each branch by 
determining the Hamming distance of the received codeword from the valid codeword 
associated with that branch. Path metric of all branches, associated with all the states are 
calculated similarly.  
 

Now, at each depth of the trellis, each state also carries some ‘accumulated path 
metric’, which is the addition of metrics of all branches that construct the ‘most likely 
path’ to that state. As an example, the trellis diagram of the code shown in Fig. 6.35.1, 
has four states and each state has two incoming and two outgoing branches. At any depth 
of the trellis, each state can be reached through two paths from the previous stage and as 
per the VA, the path with lower accumulated path metric is chosen. In the process, the 
‘accumulated path metric’ is updated by adding the metric of the incoming branch with 
the ‘accumulated path metric’ of the state from where the branch originated. No decision 
about a received codeword is taken from such operations and the decoding decision is 
deliberately delayed to reduce the possibility of erroneous decision.  

 
The basic operations which are carried out as per the hard-decision Viterbi Algorithm 

after receiving one codeword are summarized below: 
a) All the branch metrics of all the states are determined; 
 
b) Accumulated metrics of all the paths (two in our example code) leading to a state 

are calculated taking into consideration the ‘accumulated path metrics’ of the 
states from where the most recent branches emerged; 

 
c) Only one of the paths, entering into a state, which has minimum ‘accumulated 

path metric’ is chosen as the ‘survivor path’ for the state (or, equivalently ‘node’); 
 
d) So, at the end of this process, each state has one ‘survivor path’. The ‘history’ of a 

survivor  path is also maintained by the node appropriately ( e.g. by storing the 
codewords or the information bits which are associated with the branches making 
the path); 
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e) Steps a) to d) are repeated and decoding decision is delayed till sufficient number 
of codewords has been received. Typically, the delay in decision making = Lx k 
codewords where L is an integer, e.g. 5 or 6. For the code in Fig. 6.35.1, the 
decision delay of 5x3 = 15 codewords may be sufficient for most occasions. This 
means, we decide about the first received codeword after receiving the 16th 
codeword. The decision strategy is simple. Upon receiving the 16th codeword and 
carrying out steps a) to d), we compare the ‘accumulated path metrics’ of all the 
states ( four in our example) and chose the state with minimum overall 
‘accumulated path metric’ as the ‘winning node’ for the first codeword. Then we 
trace back the history of the path associated with this winning node to identify the 
codeword tagged to the first branch of the path and declare this codeword as the 
most likely transmitted first codeword.  

 
 The above procedure is repeated for each received codeword hereafter. Thus, the 
decision for a codeword is delayed but once the decision process starts, we decide once 
for every received codeword. For most practical applications, including delay-sensitive 
digital speech coding and transmission, a decision delay of Lx k codewords is acceptable. 

 
Soft-Decision Viterbi Algorithm 

 In soft-decision decoding, the demodulator does not assign a ‘0’ or a ‘1’ to 
each received bit but uses multi-bit quantized values. The soft-decision Viterbi algorithm 
is very similar to its hard-decision algorithm except that squared Euclidean distance is 
used in the branch metrics instead of simpler Hamming distance. However, the 
performance of a soft-decision VA is much more impressive compared to its HDD (Hard 
Decision Decoding) counterpart [Fig. 6.35.6 (a) and (b)]. The computational requirement 
of a Viterbi decoder grows exponentially as a function of the constraint length and hence 
it is usually limited in practice to constraint lengths of K = 9.  
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Fig. 6.35.6 (a) Decoded BER vs input BER for the rate – half convolutional codes with 
Viterbi Algorithm ; 1) k = 3 (HDD),2) k = 5 (HDD),3) k  = 3 (SDD), and 4) k= 5 (SDD). 
HDD: Hard Decision Decoding; SDD: Soft Decision Decoding. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6.35.5(b) Viterbi decoded BER vs Eb/No for the rate – half convolutional codes; 1) b 
= 3 HDD), 2) b = 5 (HDD), 3) b = 3 (SDD), 4) b = 5 (Transfer function bound)  and 5) 
Uncoded system. 
 
 
 
 
 
 
 
 
 
Fig. 6.35.6 (b) Decoded BER vs Eb/No (in dB) for the rate – half convolutional codes with 
Viterbi Algorithm ; 1) Uncoded system; 2) with  k = 3 (HDD) and 3) k  = 3 (SDD). HDD: 
Hard Decision Decoding; SDD: Soft Decision Decoding. 
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