Starting today, I will focus on tutorials for Microchip’s PIC18F series microcontrollers. Why am I shifting my focus from Atmega’s to PIC18F microcontrollers? As I stated in the first post of the N64 emulator controller, which is now Pygames Controller, I spent a semester at RPI learning how to use these microcontrollers and completely forgot how to use Atmegas. Not to mention, a lot of PIC microcontrollers are used for more commercial applications than Atmegas. If I remember correctly, Atmegas are mostly used for automotive applications while PICs are used for more commercial devices (e.g. medical devices). But enough about that! Let’s talk about how to start your first PIC18 microcontroller project.

Necessary Parts

1. 1x PIC18F4553
2. 2x 22pf capacitors
3. 1 20Mhz crystal
4. 1 PICKIT 3 programmer
 A. It’s highly recommended that you read this user guide for the programmer.
 B. Lots of male headers
 C. 1x Breadboard
 D. Lots of wire
 E. 1x 330ohm resistor
 F. 1x LED (any color)
 G. 1x 10k resistor

Here’s the schematic of the circuit. Although the picture shows a PIC18F4455, they have the same pinout.

Necessary Software

1. MPLab X
2. C18 Compiler
Under the C18 Compiler link, select MPLab C for PIC18. So once you guys install the necessary software, follow the next steps for setting up your project with MPLab X. First select file -> New Project. Select Standalone project and hit next.
Type in “PIC18F4553” under Devices drop in menu. Hit next.

Select PICKit3 under tools. Press next.
Select C18 as your complier. Hit next.
Now we have create a project name and directory. Normally the project location and folder will be placed under my documents. Before this tutorial, I set the project location under my PIC folder. Remember to select “Set as main project.” This will save you the frustration later on. Finally hit finish.

Now we have to create a main file. Right click on Source files and select New→ C Main file. Type in main.c and hit finish.
void main(void)
{
 // Set all of PORTC as outputs
 TRISC = 0x00;

 // Configure UART
 OpenUSART(USART_TX_INT_OFF & USART_RX_INT_OFF & USART_UPPER9);
 putcUSART(0x7C);
 Delay1KTCYx(4);
 putcUSART(0x04);
 Delay1KTCYx(4);
 putcUSART(0x04);
 Delay1KTCYx(4);
 while(1);
}
Finally copy and paste this code into your main.c

```
1 #include <p18f4553.h>

2 #include <delays.h>

3 #include <stdio.h>

4 #include <stdlib.h>

5

6 /* PIC Configuratings */

7 #pragma config FOSC = HS

8 #pragma config WDT = OFF
```
#pragma config PBADEN = OFF

#pragma config LVP = OFF

#pragma config PWRT = ON

#pragma config DEBUG = OFF

void main(void)
{
 TRISCbits.RC0=0;
 PORTCbits.RC0=0;

 while(1)
 {
 PORTCbits.RC0=1;
 Delay10KTCYx(50);
 PORTCbits.RC0=0;
 Delay10KTCYx(50);
 }
}
Now we’re going to build and program our mcu. First select build. You should receive a confirmation that the project was built successfully.

Once it finishes building, hit the program button.
Congrats! Your LED is flashing at 10hz!

Here how the code works. Out al of the #pragma in the code, pay close attention to #pragma config FOSC =HS. This tells the PIC microcontroller to accept the external crystal we connect. Please note that if we were using the 28pin PIC18 series microcontroller, this would most likely be changed to #pragma config OSC =HS.

Now for the code. Whenever we want to set a particular pin as an output, we have to access the TRISx, where the x stands for the letter of the port we want (in this case, TRISC for PORTC), and write a 0 to that pin. Thus we write TRISCbits.RC0=0 to set PORTC0 as an output. Finally, to either turn on or turn off this particular pin, we just have to write a 0 (off) or 1 (on) to PORTC. Thus PORTCbits.RC0=0 is setting PORTC0 off.

Finally, the rest of the code is just flashing the LED on and off every 100ms. The while(1) is there to make sure it runs forever. We, that’s all I got for you guys today! Thank you guys for reading! If you have any comments or suggestions, please leave a comment!
Source: http://coolcapengineer.wordpress.com/2012/12/20/tutorials-beginners-guide-to-pic18-microcontrollers/