
An assembler directive is a message to the assembler that tells the assembler something it

needs to know in order to carry out the assembly process; for example, an assemble directive tess

the assembler where a program is to be located in memory. We are going to use the following

directives in this course:

<label> EQU <value> Equate

 ORG <value> Origin

<label> DC <value> Define constant

<label> DS <value> Define storage

 END <value> End of assembly language program and "starting address" for

 execution

In each case, the term <label> indicates a user-defined label (i.e., symbolic name) that must start in

column 1 of the program, and <value> indicates a value that must be supplied by the programmer

(this may be a number, or a symbolic name that has a value).

Equate:The EQU assembler directive simply equates a symbolic name to a numeric value.

Consider:

Sunday EQU 1

Monday EQU 2

The assembler substitutes the equated value for the symbolic name; for example, if you write the

instruction ADD.B #Sunday,D2, the assembler treats it as if it were ADD.B #1,D2.

You could also write

Sunday EQU 1

Monday EQU Sunday + 1

In this case, the assembler evaluates "Sunday + 1" as 1 + 1 and assigns the value 2 to the symbolic

name "Monday".

Do not think that the EQU directive creates variables or constant. It doesn't and it has no effect on

the code generated by the program. This directive simply allows you to make a name equivalent to

its value (i.e., it's a form of short hand).

Origin : The origin directive tells the assembler where to load instructions and data into memory.

The 68000 reserves the first 1024 bytes of memory for exception vectors. Your programs will start

at location 1024; that is, you should begin your program with ORG 1024 or ORG $400 (remember

that 1024 = 40016).

Define Constant :The define constant assembler directive allows you to put a data value in

memory at the time that the program is first loaded. The DC directive takes the suffix .B, .W, or .L.

You can put several values on one line (each value is separated by a comma). The optional label

field is given the address of the first location in memory allocated to the DC function. Consider the

example:

 ORG $2000 Locate data here

Val1 DC.B 20,34 Store 20 and 34 in consecutive bytes

Val2 DC.L 20

Assembler Directives

Parithy
Typewritten Text

Me DC.B ’Alan Clements’

The effect of this code is to store the value $14 in location $2000, $22 in location $2001,

$00000014 in locations $2002, $2003, $2004, $2005. Remember that a 32-bit longword takes four

bytes of memory. The ASCII string „Alan Clements‟ is stored in bytes $2006 to $2012.

If you write MOVE.B Val2,D2, the assembler translates it as MOVE.B $2002,D2. When this

instruction is executed, data register D2 is loaded with the contents of memory location $2002. The

value loaded into D2 might be 20. Might be?? Yes, might be, because another instruction might

modify the contents of Val2. By the way, if you execute MOVE.B Me,D0, data register D0 would

be loaded with $41 (the ASCII code for „A‟). However, if you execute MOVE.W Me,D0, data

register D0 would be loaded with $416C (the ASCII code for „Al‟).

Define Storage : The define storage directive is used to reserve one or more memory locations.

This directive is similar to the Pascal type declaration. Consider:

Result DS.B 1 Save a byte for Result

Table

Point

DS.W 10

DS.L 1

Save 10 words (20 bytes) for Table

Save 1 longword (4 bytes) for Point

We will put these two fragments of assembly language together and assemble them using the X68K

command (X68K is the Teesside 68K cross-assembler that runs under DOS on a PC). The
following is part of the listing file produced by the assembler. The second column contains memory

addresses and the third column contains the data loaded into these addresses.

2

00002000

3

00002000

4

00002002

5

00002006

6

00002013

7

00002014

8

00002028

ORG $2000 ;Locate data here

1422 VAL1: DC.B 20,34

00000014 VAL2: DC.L 20

416C616E2043 ME: DC.B ’Alan

Clements’

6C656D656E74

73

00000001 RESULT: DS.B 1 ;Save a byte for Result

00000014 TABLE: DS.W 10 ;Save 10 words (20 bytes) for

Table

00000004 POINT: DS.L 1 ;Save 1 longword (4 bytes) for

Point

A L I G N : The .ALIGN directive advances the current location counter to the next specified

"boundary."

Syntax

. A L I G N [b o u n d a r y]

Parameters

boundary

An integer value for the byte boundary to which you want to advance the location

counter. The Assembler advances the location counter to that boundary. Permissible

values must be a power of 2 and can range from one to 4096. The default value is 8

(double word aligned).

A L L O W : The .ALLOW directive tells the Assembler to temporarily allow PA-RISC features

from a higher version level of the PA-RISC architecture. The .ALLOW directive also tells the

Assembler to temporarily allow implementation-specific features in the assembly source file.

Syntax

. A L L O W 1 . 1

Lines of source code

. A L L O W

Parameters

Title not available (Parameters)

1.1

2.0

Allows PA-RISC 1.1 features.

Allows PA-RISC 2.0 features.

relocatable object file marked as a PA-RISC 1.1 architecture version.

C A L L :

The .CALL directive marks the next branch statement as a procedure call, and permits you to

describe the location of arguments and the function return result.

Syntax

. C A L L [a r g u m e n t _ d e s c r i p t i o n [a r g u m e n t _ d e s c r i p t i o n] . . .]

Parameters

argument_ description

Allows you to communicate to the linker the types of registers used to pass floating point

arguments and receive floating point return results in the succeeding procedure call. Similarly, this

information can be communicated in the .EXPORT directive.

The linker requires this information because the runtime architecture allows floating point

arguments and return values to reside in either general registers or floating point registers,

depending on source language convention. At link time, the linker ensures that both the caller and

called procedure agree on argument location. If not, the linker may insert code to relocate the

arguments (or return result) before control is transferred to the called procedure or a procedure

return is completed.

You can use up to 5 argument-descriptions in the .CALL directive; one for each of the four

arguments that may be passed in registers (arg0-arg3), and one for a return value (ret0).

C O M M : The .COMM directive makes a storage request for a specified number of bytes.

Syntax

l a b e l . C O M M [n u m _ b y t e s]

Parameters

label

Labels the location of the reserved storage.

num_bytes

An integer value for the number of bytes you want to reserve. The Assembler uses a

default value of 4 if the .COMM directive lacks a num_bytes parameter. Permissible

values range from one to 0x3FFFFFFF.

Discussion

The .COMM directive declares a block of storage that can be thought of as a common block. You

must label every .COMM directive. The linker associates the label with the subspace in which the

.COMM directive is declared and allocates the necessary storage within that subspace. .COMM

always allocates its space in the BSS subspace of the $PRIVATE$ space. If the label of a

.COMM directive appears in several object modules, the linker uses the maximum size specified in

any module when it allocates the necessary storage in the current subspace.

E N D : The .END directive terminates an assembly language program.

Syntax

. E N D

Discussion

This directive is the last statement in an assembly language program. If a source file lacks an .END

directive, the Assembler terminates the program when it encounters the end of the file.

The .END directive terminates an assembly language program.

Syntax

. E N D

Discussion

This directive is the last statement in an assembly language program. If a source file lacks an .END

directive, the Assembler terminates the program when it encounters the end of the file.

E N D M : The .ENDM directive marks the end of a macro definition. The macro definition is

entered into the macro table and the remaining source lines are read in and assembled. An .ENDM

directive must always accompany a .MACRO directive.

Syntax

. E N D M

Example

This example defines the macro QUADL; it aligns the data specified in the macro parameters on

quad word boundaries. The .ENDM directive delimits the end of the definition of QUADL.

QUADL .MACRO WD1,WD2,WD3,WD4

.ALIGN 16

.WORD WD1

.ALIGN 16

.WORD WD2

.ALIGN 16

.WORD WD3

.ALIGN 16

.WORD WD4

.ENDM

Parithy
Typewritten Text
Source : http://nprcet.org/e%20content/Misc/e-Learning/IT/IV%20Sem/CS%202252-Microprocessors%20and%20Microcontrollers.pdf

