
ACCESSING IAP ROUTINES ON

P89V66X

All 8051 based microcontrollers from NXP come with some sort of built-in flash

memory. The microcontrollers provide multiple methods to program the flash. The

most common method is In-System Programming (ISP). In ISP, the code is

transferred to the flash, through the serial port, by a built-in ISP bootloader. The

other method is In-Application Programming (IAP). In IAP, the user application

receives the code through whatever mechanism (like say SPI or I²C) and programs

the flash. A set of built-in routines, called the IAP routines, are available to the

application for manipulating the flash.

This article shows how to access the IAP routines on P89V66x based devices. The

routines will be accessed from C, and the free and open source SDCC compiler

will be used.

The Boot Block

On the P89V66x devices the bootloader IAP routines are located within the boot

block. The boot block is usually not accessible. But by setting ENBOOT bit in

the AUXR1 register, the boot block gets mapped to the address range 0xFC00 to

0xFFFF.

http://www.zilogic.com/blog/iap-p89v66x.html
http://www.zilogic.com/blog/iap-p89v66x.html

The ENBOOT bit is located at bit position 5 in the AUXR1 register. For some

unknown reason, this is an undocumented flag!

So to access the IAP routines, the boot block must be mapped first.

BootBlock and ENBOOT

IAP routines

The IAP routines and the calling conventions are provided in the product data

sheet. All the IAP routines are invoked through a common entry point at 0xFFF0.

The operation to perform is specified using the R1 register. For example to erase

erase a block, R1 should be set to 0x1 and to program a byte, R1 should be set

to 0x2. The arguments to the operation are passed in DPH, DPL and in some

cases ACC. After the operation completes status and return values are passed

on ACC.

The assembly code skeleton for invoking the IAP routine, will look something like

the following.

 mov R1, <op> ; Specify the operation

 mov DPL, <arg1> ; Specify the first argument

 mov DPH, <arg2> ; Specify the second argument

 PGM_MTP = 0xFFF0

 lcall PGM_MTP ; Invoke the IAP entry point

IAP and Interrupts

It should be noted that interrupts should not occur while executing IAP routines.

Hence, it is best to disable interrupts before invoking them, and restore the

interrupt state after invocation.

Invoking IAP routines from C

The goal is to write a C function that takes in the values for R1, DPH and DPL as

arguments, invokes the IAP routine, and returns the value in ACC. The prototype

of the funtion is shown below.

unsigned char iap_call(unsigned char r1, unsigned char dph, unsigned char

dpl);

To acheive this, we will need to use inline assembly to access the IAP routines. We

also need to know SDCC’s calling convention, so that we know in which registers

the arguments are passed to the C function. This information can be obtained by

compiling a C program and looking and the generated assembly code!

According to the generated assembly for the small memory model, the first

function parameter is stored inDPL, and the remaining parameters are stored

in _iap_call_PARAM_n, where n is th parameter no.

Combining all the information we have so far, the following code listing shows the

implementation of iap_call.

unsigned char iap_call(unsigned char r1, unsigned char dph, unsigned char

dpl)

{

 bit save_ea;

 /* Too keep the compiler quiet. */

 r1, dph, dpl;

 /* Save and disable interrupts. */

 save_ea = EA;

 EA = 0;

 /* Enable boot block. */

 AUXR1 |= 0x20;

 /* Invoke the IAP routine. */

 _asm ;

 mov R1, DPL ; /* First argument is in DPL */

 mov DPH, _iap_call_PARM_2 ; /* Second argument from memory */

 mov DPL, _iap_call_PARM_3 ; /* Third argument from memory */

 PGM_MTP = 0xFFF0 ;

 lcall PGM_MTP ; /* IAP entry point is 0xFFF0 */

 mov DPL, A ; /* C function return value should be in DPL */

 _endasm;

 /* Disable the boot block. */

 AUXR1 &= ~0x20;

 /* Restore interrupt enable flag. */

 EA = save_ea;

}

Source: http://www.zilogic.com/blog/iap-p89v66x.html

