
AVR: Configuring and Using Ports in C

There comes a time, when you want turn something on using a pin from your AVR

chip. Today’s tutorial discusses how to configure any port on any AVR microcontroller.

In order to use the digital IO of any AVR chip, you must tell the chip which pins are

output and input pins. In order to do this, you must first configure DDRn register,

where n stands of the PORT you’re configuring (e.g. DDRB configures PORTB). The

number of DDRn registers and the bit length of the DDRn register depends on the

number of PORTs and the bit length of each PORT on chip you’re using. For example,

the ATtiny85 only has one 6 bit long PORTB while an Atmega 328 chip has two 8 bit

long ports (PORTB and PORTD) and one 6 bit long port(PORTC). Thus,the ATtiny has

one DDRB register, while the Atmega328 has one DDRB register, one DDRD register,

and one DDRC register. Fig.1 shows the DDRB and PORTB register for the ATmega328.

Figure 1: DDRB and PORTB register from ATmega328 datasheet

For the rest of the tutorial, we’ll be using PORTB and DDRB. Now, how do you tell the

microcontroller which pins are inputs and outputs using DDRB? Let’s say we want to

only configure PB0 and PB2 as output pins. To make PB0 and PB2 output pins, you

must write a bit to both DDRB0 and DDRB2 in DDRB. Thus we want to write 5 to the

DDRB register (2^0+2^2=5=0×05). Here’s a C code example of configuring the DDRB

register.

DDRB=0x05; // Configures PB0 and PB2 as output pins

Keep in mind, we just configure PB0 and PB2 as output pins, the rest of the pins are

configured to be input pins. Now, to turn on PB0 then PB2, look at the following C

code.

PORTB=0x01; // Turns on just PB0

PORTB=0x04; // Turns on just PB2

http://coolcapengineer.files.wordpress.com/2012/07/port.jpg

PORTB=0x05; // Turns on PB0 and PB2

The previous code is overriding all of the bits in the PORTB register to make PB0 and

PB2 turn on. In most projects, you only want to configure the pins you are using and

preserve the states of the rest of the pins. To preserve the states of the previous bits

while keeping the rest of the bits intact, we want to use bit masking. To do

bitmasking, we simply use and/or logic operations.

PORTB=0x00; // Making sure 0 is in all pins of PORTB

PORTB|=0x05; // Turn on just PB0 and PB2

PORTB&=~0x05; // Turns off just PB0 and PB2 by taking the logical and of the

complement of 5

Source: http://coolcapengineer.wordpress.com/2012/07/31/avr-configuring-and-

using-ports-in-c/

