
 

 

8259A PROGRAMMABLE INTERRUPT C ONTROLLER (8259A/8259A-2) 

Features 

Y 8086,  8088  Compatible 

Y MCS-80,  MCS-85 ompatible 

Y  Eight-Level Priority Controller 

Y  Expandable to 64 Levels 

Y  Programmable Interrupt Modes 

Y  Individual Request  Mask  Capability 

Y  Single a 5V Supply  (No Clocks) 

Y  Available in 28-Pin  DIP and  28-Lead PLCC  Package 
 

 
4.6.1 FUNCTIONAL DESCRIPTION 

 

Intel 8259A Programmable Interrupt Controller  handles up to eight vectored priority 

interrupts for the CPU. It is cascadable for up to 64 vectored priority interrupts without 

additional  circuitry. It is packaged  in a 28-pin DIP, uses NMOS technology and  requires a 

single  a 5V supply. Circuitry is static,  requiring no clock input. 
 

The 8259A is designed  to minimize the  software and  real time overhead in handling multi-

level priority inter- rupts.  It has  several  modes, permitting  optimization  for a variety of 

system requirements. 
 

The 8259A is fully upward  compatible with the Intel 8259.  Software originally written for 

the 8259  will operate the 8259A in all 8259  equivalent modes (MCS-80/85, Non- Buffered, 

Edge  Triggered). 
 
 

 
Interrupts in Microcomputer Systems 

 

Microcomputer system  design requires that I.O de- vices  such  as keyboards, displays, 

sensors and  oth- er  components  receive  servicing   in  a  an  efficient manner so  that large  

amounts of the  total  system tasks can  be assumed by the  microcomputer with little or no 

effect  on throughput. 
 

The most  common method of servicing such  devic- es is the Polled  approach. This is 

where  the proces- sor must  test each device  in sequence and  in effect „„ask‟‟ each one 

if it needs servicing. It is easy to see that  a  large  portion  of the main  program is looping 

through  this continuous polling cycle and that such  a method would  have  a  serious 



detrimental effect  on system throughput, thus  limiting the tasks that could be assumed by 

the  microcomputer and reducing the cost  effectiveness of using such  devices 

 
A more  desirable method would  be  one  that  would allow  the  microprocessor  to be 

executing  its  main program and  only stop  to service peripheral devices when  it is told to do 

so by the device  itself. In effect,  the  method would provide an external asynchronous input 

that  would inform the  processor that  it should complete whatever instruction  that 

is currently being executed and  fetch  a  new  routine  that  will service the requesting 

device.  Once  this  servicing  is com- plete,  however, the processor would resume exactly 

where  it left off. 

 
This method is called Interrupt . It is easy to see that system throughput  would  drastically 

increase,  and thus   more  tasks  could  be  assumed by the  micro- computer to further 

enhance its cost  effectiveness. 



 
 

The  Programmable  Interrupt  Controller  (PIC) func- tions  as  an  overall  manager  in an 

Interrupt-Driven  system  environment.  It accepts  requests  from  the peripheral equipment, 

determines  which  of  the  in- coming  requests is of the highest importance (priori- ty), 

ascertains whether the  incoming  request  has  a higher   priority  value  than 

the  level currently  being serviced, and  issues  an  interrupt  to the  CPU based on this 

determination. 

 
Each peripheral device   or  structure  usually  has   a special program or „„routine‟‟ that  is 

associated  with its  specific functional  or operational  requirements; this  is referred to 

as  a  „„service  routine‟‟.  The  PIC, after issuing an Interrupt to the CPU, must somehow 

input information  into the CPU that  can „„point‟‟ the Program Counter  to  the service 

routine  associated  with the requesting device.  This „„pointer‟‟ is an ad- dress in a 

vectoring table  and  will often  be referred to, in this document, as vectoring data. 

Parithy
Typewritten Text
Source : http://nprcet.org/e%20content/Misc/e-Learning/IT/IV%20Sem/CS%202252-Microprocessors%20and%20Microcontrollers.pdf




