
Transfer Functions 
The ratio of the output and input amplitudes for Figure 1, known as the transfer function or the frequency 

response, is given by 

VoutVin==H(f)1j2πfRC+1 

(1) 

Implicit in using the transfer function is that the input is a complex exponential, and the output is also a complex 

exponential having the same frequency. The transfer function reveals how the circuit modifies the input amplitude in 

creating the output amplitude. Thus, the transfer function completely describes how the circuit processes the input 

complex exponential to produce the output complex exponential. The circuit's function is thus summarized by the 

transfer function. In fact, circuits are often designed to meet transfer function specifications. Because transfer 

functions are complex-valued, frequency-dependent quantities, we can better appreciate a circuit's function by 

examining the magnitude and phase of its transfer function (Figure 2). 

Simple Circuit 

 

Figure 1: A simple RC circuit. 

Magnitude and phase of the transfer function 

(a) |H(f)|=1(2πfRC)2+1√ 

 

(b) ∠(H(f))=−arctan(2πfRC) 

http://cnx.org/content/m0028/latest/#rc
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Figure 2: Magnitude and phase of the transfer function of the RC circuit shown 
in Figure 1 when RC=1. 

This transfer function has many important properties and provides all the insights needed to determine how the 

circuit functions. First of all, note that we can compute the frequency response for both positive and negative 

frequencies. Recall that sinusoids consist of the sum of two complex exponentials, one having the negative frequency 

of the other. We will consider how the circuit acts on a sinusoid soon. Do note that the magnitude has even 

symmetry: The negative frequency portion is a mirror image of the positive frequency portion: |H(−f)|=|H(f)|. 
The phase has odd symmetry: ∠(H(−f))=−∠(H(f)). These properties of this specific example apply 

for all transfer functions associated with circuits. Consequently, we don't need to plot the negative frequency 

component; we know what it is from the positive frequency part. 

The magnitude equals 12√ of its maximum gain (1 at f=0) when 2πfRC=1 (the two terms in the denominator of 

the magnitude are equal). The frequency fc=12πRC defines the boundary between two operating ranges. 

• For frequencies below this frequency, the circuit does not much alter the amplitude of the complex 

exponential source. 

• For frequencies greater than fc, the circuit strongly attenuates the amplitude. Thus, when the source 

frequency is in this range, the circuit's output has a much smaller amplitude than that of the source. 

For these reasons, this frequency is known as the cutoff frequency. In this circuit the cutoff frequency 

depends only on the product of the resistance and the capacitance. Thus, a cutoff frequency of 1 kHz occurs 

when 12πRC=103 or RC=10−32π=1.59×10-4. Thus resistance-capacitance combinations of 1.59 kΩ and 100 

nF or 10 Ω and 1.59 μF result in thesame cutoff frequency. 

The phase shift caused by the circuit at the cutoff frequency precisely equals −π4. Thus, below the cutoff frequency, 

phase is little affected, but at higher frequencies, the phase shift caused by the circuit becomes −π2. This phase shift 

corresponds to the difference between a cosine and a sine. 

http://cnx.org/content/m0028/latest/#rc


We can use the transfer function to find the output when the input voltage is a sinusoid for two reasons. First of all, 

a sinusoid is the sum of two complex exponentials, each having a frequency equal to the negative of the other. 

Secondly, because the circuit is linear, superposition applies. If the source is a sine wave, we know that 

vin(t)==Asin(2πft)A2j(ej2πft−e−(j2πft)) 

(2) 

Since the input is the sum of two complex exponentials, we know that the output is also a sum of two similar 

complex exponentials, the only difference being that the complex amplitude of each is multiplied by the transfer 

function evaluated at each exponential's frequency. 

vout(t)=A2jH(f)ej2πft−A2jH(−f)e−(j2πft) 

(3) 

As noted earlier, the transfer function is most conveniently expressed in polar form: H(f)=|H(f)|ej∠(H(f)). 

Furthermore, |H(−f)|=|H(f)| (even symmetry of the magnitude) and ∠(H(−f))=−∠(H(f)) (odd symmetry of 

the phase). The output voltage expression simplifies to 

vout(t)==A2j|H(f)|ej2πft+∠(H(f))−A2j|H(f)|e(−(j2πft))−∠(H(f))A|H(f)|sin(2πft+∠(H(f))) 

(4) 

The circuit's output to a sinusoidal input is also a sinusoid, having a gain equal to the magnitude of the 

circuit's transfer function evaluated at the source frequency and a phase equal to the phase of the 

transfer function at the source frequency. It will turn out that this input-output relation description applies to 

any linear circuit having a sinusoidal source. 

EXERCISE 1 

This input-output property is a special case of a more general result. Show that if the source can be written as the 

imaginary part of a complex exponential— vin(t)=Im(Vej2πft) — the output is given 

by vout(t)=Im(VH(f)ej2πft). Show that a similar result also holds for the real part. 

SOLUTION 

The key notion is writing the imaginary part as the difference between a complex exponential and its complex 

conjugate: 

Im(Vej2πft)=Vej2πft−V∗e−(j2πft)2j 

(5) 



The response to Vej2πft is VH(f)ej2πft, which means the response to V∗e−(j2πft) is V∗H(−f)e−(j2πft). 

As H(−f)=H(f)∗, the Superposition Principle says that the output to the imaginary part is Im(VH(f)ej2πft). 

The same argument holds for the real part: Re(Vej2πft)→Re(VH(f)ej2πft). 

The notion of impedance arises when we assume the sources are complex exponentials. This assumption may seem 

restrictive; what would we do if the source were a unit step? When we use impedances to find the transfer function 

between the source and the output variable, we can derive from it the differential equation that relates input and 

output. The differential equation applies no matter what the source may be. As we have argued, it is far simpler to 

use impedances to find the differential equation (because we can use series and parallel combination rules) than any 

other method. In this sense, we have not lost anything by temporarily pretending the source is a complex 

exponential. 

In fact we can also solve the differential equation using impedances! Thus, despite the apparent restrictiveness of 

impedances, assuming complex exponential sources is actually quite general. 
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