THE REDUCTION OF PAPR IN OFDM BY USING NEW COMPANDING TRANSFORM

T.NAGARAJU\(^1\)& K.RAMANaidu\(^2\)

\(^1\)JNTUACE, A.P., India, Email: nag.thrishul@gmail.com
\(^2\)JNTUCEP, A.P, India, Email: kramanaidu@gmail.com

Abstract—The main drawback of the OFDM is its high peak to average power ratio (PAPR). There are several PAPR reduction techniques. Among the various PAPR reduction techniques, companding transform is attractive for its simplicity and effectiveness. This paper proposes a new companding algorithm. The proposed algorithm offers an improved bit error rate and minimized out-of-band interference while reducing PAPR effectively, compared with the others. Theoretical analysis and numerical simulation are presented.

Index Terms — OFDM, Companding, PAPR.

I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) is the multicarrier modulation technique, which supports high data rates. It is immune to the multipath fading [1]. The applications of OFDM includes WiMAX, DVB/DAB and 4G wireless systems. Though, OFDM has several applications, it has one critical problem. The critical problem is its high peak-to-average power ratio (PAPR) [1]. High PAPR increases the complexity of analog-to-digital (A/D) and digital-to-analog (D/A) converters, and lowers the efficiency of power amplifiers. Several PAPR reduction techniques have been proposed. Over the past decade, such as block coding, selective mapping (SLM) and tone reservation, just to name a few [2]. Among all these techniques the simplest solution is to clip the transmitted signal when its amplitude exceeds a desired threshold. Clipping is a highly nonlinear process, however. It produces significant out-of-band interference (OBI). A good remedy for the OBI is the so-called companding. The method was first proposed in [3], which employed the classical \(\mu \)-law transform and showed to be rather effective. Since then many different companding transforms with better performances have been published [4]-[7]. This paper proposes and evaluates a new companding algorithm. The algorithm uses the special airy function and is able to offer an improved bit error rate (BER) and minimized OBI while reducing PAPR effectively. The paper is organized as follows. In the next section the PAPR problem in OFDM is briefly discussed. Section III presents the new algorithm and its theoretical analysis. Section IV shows the performance simulation. The last section describes the conclusion.

II. PAPR IN OFDM

Let \(y(0), y(1), \cdots, y(N-1) \) represent the data sequence to be transmitted in an OFDM symbol with \(N \) subcarriers. The baseband representation of the OFDM symbol is given by:

\[
y(t) = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} y(n) e^{j \frac{2\pi n t}{T}} \quad 0 \leq t \leq T
\]

where \(T \) is the duration of the OFDM symbol. According to the central limit theorem, when \(N \) is large, both the real and imaginary parts of \(y(t) \) become Gaussian distributed, each with zero mean and a variance of \(E[y(t)^2]/2 \), and the amplitude of the OFDM symbol follows a Rayleigh distribution. Consequently it is possible that the maximum amplitude of OFDM signal may well exceed its average amplitude. Practical hardware (e.g. A/D and D/A converters, power amplifiers) has finite dynamic range; therefore the peak amplitude of OFDM signal must be limited. PAPR is mathematically defined as:

\[
P_{\text{APR}} = 10 \log_{10} \max \left[\frac{|y(t)|^2}{\frac{1}{T} \int_{0}^{T} |y(t)|^2 \, dt} \right] \quad (\text{dB})
\]

It is easy to see from the equation that PAPR reduction may be achieved by decreasing the numerator or increasing the denominator or both. The effectiveness of a PAPR reduction technique is measured by the complementary cumulative distribution function (CCDF), which is the probability that PAPR exceeds some threshold, i.e.:

\[
\text{CCDF} = \text{Probability}(P_{\text{APR}} > \rho),
\]

where \(\rho \) is the threshold.

III. NEW COMPANDING ALGORITHM

OBI is the spectral leakage into alien channels. Quantification of the OBI caused by companding requires the knowledge of the power spectral density (PSD) of the companded signal. Unfortunately analytical expression of the PSD is in general mathematically intractable, because of the nonlinear companding transform involved. Here we take an
alternative approach to estimate the OBI. Let \(f(y) \) be a nonlinear companding function, and \(y(t) = \sin(\theta) \) be the input to the compander. The companded signal \(z(t) \) is:

\[
z(t) = \sum_{k=-\infty}^{\infty} c(k)e^{2\pi j k t}
\]

where the coefficients \(c(k) \) is calculated as:

\[
c(k) = c(-k)
\]

Companding introduces minimum amount of OBI if the companding function \(f(\cdot) \) is infinitely differentiable. The functions that meet the above condition are the smooth functions. We now propose a new companding algorithm using a smooth function, namely the airy special function. The companding function is as follows:

\[
f(y) = \beta \cdot \text{sign}(y) \cdot [\text{airy}(0) - \text{airy}(\alpha \cdot |y|)]
\]

where \(\text{airy}(\cdot) \) is the airy function of the first kind. \(\alpha \) is the parameter that controls the degree of companding (and ultimately PAPR). \(\beta \) is the factor adjusting the average output power of the compander to the same level as the average input power:

\[
\beta = \frac{\mathbb{E}[|y|^2]}{\mathbb{E}[\text{airy}(0) - \text{airy}(\alpha \cdot |y|)]^2}
\]

where \(\mathbb{E}[\cdot] \) denotes the expectation. The decoupling function is the inverse of \(f(\cdot) \):

\[
f^{-1}(y) = \frac{1}{\alpha} \cdot \text{sign}(y) \cdot \text{airy}^{-1}(\text{airy}(0) - |y| \beta)
\]

where the superscript \(-1\) represents the inverse operation. Notice that the input to the decoupler is a quantized signal with finite set of values. We can therefore numerically pre-compute \(f^{-1}(\cdot) \) and use table look-up to perform the decoupling in practice. Next we examine the BER performance of the algorithm. Let \(z(t) \) denote the output signal of the decoupler, \(w(t) \) the white Gaussian noise. The received signal can be expressed as:

\[
s(t) = z(t) + w(t)
\]

The decoupled signal \(s(t) \) simply is:

\[
s(t) = -1\cdot s(-t) = -1\cdot [z(-t) + w(-t)]
\]

IV. PERFORMANCE SIMULATION

The OFDM system used in the simulation consists of 64 QPSK-modulated data points. The size of the FFT/IFFT is 256, meaning a 4× oversampling. Given the compander input power of 3dBm, the parameter in the companding function is chosen to be 30. Consequently about 19.6 percent of \(s(t) \) is within the noise suppression range of the decoupling function. Two other popular companding algorithms, namely the \(-\)law companding \([3]\) and the exponential companding \([5]\), are also included in the simulation for the purpose of performance comparison. The simulated PSD of the companded signals is illustrated in Fig. 2. The proposed algorithm produces OBI almost 3dB lower than the exponential algorithm, 10dB lower than the \(-\)law. The result is in line with our expectation. The \(-\)law function has a singularity in its second order derivative at \(x = 0 \) and therefore is expected to have the strongest OBI. Fig. 3 depicts the CCDF of the three companding schemes. The new algorithm is roughly 1.5dB inferior to the exponential, but surpasses the \(-\)law by 2dB. The BER vs. SNR is plotted in Fig. 4. Our algorithm outperforms the other two. To reach a BER of 10\(^{-3}\), for example, the required SNR are 8.9dB, 10.4dB and 11.7dB respectively for the proposed, the exponential and the \(-\)law companding schemes, implying a 1.5dB and 2.8dB improvement with the new algorithm. The amount of improvement increases as SNR becomes higher. One more observation from the simulation is: unlike the exponential companding whose performance is found almost unchanged under different degrees of companding, the new algorithm is flexible in adjusting its specifications simply by changing the value of \(\alpha \) in the companding function.
V. CONCLUSION

In this paper, we have proposed a new companding algorithm. Both theoretical analysis and computer simulation show that the algorithm offers improved performance in terms of BER and OBI while reducing PAPR effectively.

ACKNOWLEDGMENT

The author would like to thank the anonymous reviewers for their valuable comments and suggestions.

REFERENCES

