Part IV Modern Rectifiers and Power System Harmonics Chapter 15 Power and Harmonics in Nonsinusoidal Systems Chapter 16 Line-Commutated Rectifiers Chapter 17 The Ideal Rectifier Chapter 18 Low Harmonic Rectifier Modeling and Control # Chapter 15 Power And Harmonics in Nonsinusoidal Systems in terms of Fourier series 15.2. RMS value of a waveform 15.3. Power factor THD Distortion and Displacement factors 15.4. Power phasors in sinusoidal systems 15.5. Harmonic currents in three-phase systems 15.6. AC line current harmonic standards ## 15.1. Average power #### Observe transmission of energy through surface S Express voltage and current as Fourier series: $$v(t) = V_0 + \sum_{n=1}^{\infty} V_n \cos \left(n\omega t - \varphi_n\right)$$ $$i(t) = I_0 + \sum_{n=1}^{\infty} I_n \cos \left(n\omega t - \theta_n \right)$$ relate energy transmission to harmonics ## Energy transmittted to load, per cycle $$W_{cycle} = \int_0^T v(t)i(t)dt$$ This is related to average power as follows: $$P_{av} = \frac{W_{cycle}}{T} = \frac{1}{T} \int_0^T v(t)i(t)dt$$ Investigate influence of harmonics on average power: substitute Fourier series $$P_{av} = \frac{1}{T} \int_0^T \left(V_0 + \sum_{n=1}^{\infty} V_n \cos\left(n\omega t - \varphi_n\right) \right) \left(I_0 + \sum_{n=1}^{\infty} I_n \cos\left(n\omega t - \Theta_n\right) \right) dt$$ ## Evaluation of integral Orthogonality of harmonics: Integrals of cross-product terms are zero $$\int_{0}^{T} \left(V_{n} \cos \left(n\omega t - \varphi_{n} \right) \right) \left(I_{m} \cos \left(m\omega t - \theta_{m} \right) \right) dt = \begin{cases} 0 & \text{if } n \neq m \\ \frac{V_{n}I_{n}}{2} \cos \left(\varphi_{n} - \theta_{n} \right) & \text{if } n = m \end{cases}$$ Expression for average power becomes $$P_{av} = V_0 I_0 + \sum_{n=1}^{\infty} \frac{V_n I_n}{2} \cos \left(\varphi_n - \theta_n \right)$$ So net energy is transmitted to the load only when the Fourier series of v(t) and i(t) contain terms at the same frequency. For example, if the voltage and current both contain third harmonic, then they lead to the average power VI $$\frac{V_3I_3}{2}\cos\left(\mathbf{\phi}_3-\mathbf{\theta}_3\right)$$ Voltage: fundamental only Current: third harmonic only Power: zero average Fundamentals of Power Electronics 6 Chapter 15: Power and Harmonics in Nonsinusoidal Systems Voltage: third harmonic only Current: third harmonic only, in phase with voltage **Power:** nonzero average Fundamentals of Power Electronics #### Fourier series: $$v(t) = 1.2 \cos(\omega t) + 0.33 \cos(3\omega t) + 0.2 \cos(5\omega t)$$ $$i(t) = 0.6 \cos(\omega t + 30^\circ) + 0.1 \cos(5\omega t + 45^\circ) + 0.1 \cos(7\omega t + 60^\circ)$$ Average power calculation: $$P_{av} = \frac{(1.2)(0.6)}{2}\cos(30^\circ) + \frac{(0.2)(0.1)}{2}\cos(45^\circ) = 0.32$$ Voltage: 1st, 3rd, 5th Current: 1st, 5th, 7th **Power:** net energy is transmitted at fundamental and fifth harmonic frequencies Fundamentals of Power Electronics # 15.2. Root-mean-square (RMS) value of a waveform, in terms of Fourier series (rms value) = $$\sqrt{\frac{1}{T} \int_0^T v^2(t) dt}$$ Insert Fourier series. Again, cross-multiplication terms have zero average. Result is (rms value) = $$\sqrt{V_0^2 + \sum_{n=1}^{\infty} \frac{V_n^2}{2}}$$ - Similar expression for current - Harmonics always increase rms value - Harmonics do not necessarily increase average power - Increased rms values mean increased losses #### 15.3. Power factor For efficient transmission of energy from a source to a load, it is desired to maximize average power, while minimizing rms current and voltage (and hence minimizing losses). Power factor is a figure of merit that measures how efficiently energy is transmitted. It is defined as $$power factor = \frac{(average power)}{(rms voltage) (rms current)}$$ Power factor always lies between zero and one. ### 15.3.1. Linear resistive load, nonsinusoidal voltage Then current harmonics are in phase with, and proportional to, voltage harmonics. All harmonics result in transmission of energy to load, and unity power factor occurs. $$I_{n} = \frac{V_{n}}{R} \qquad \qquad \theta_{n} = \varphi_{n} \qquad \text{so } \cos(\theta_{n} - \varphi_{n}) = 1$$ $$(\text{rms voltage}) = \sqrt{V_{0}^{2} + \sum_{n=1}^{\infty} \frac{V_{n}^{2}}{2}}$$ $$(\text{rms current}) = \sqrt{I_{0}^{2} + \sum_{n=1}^{\infty} \frac{I_{n}^{2}}{2}} = \sqrt{\frac{V_{0}^{2} + \sum_{n=1}^{\infty} \frac{V_{n}^{2}}{2R^{2}}}$$ $$= \frac{1}{R} \text{ (rms voltage)}$$ $$P_{av} = V_{0}I_{0} + \sum_{n=1}^{\infty} \frac{V_{n}I_{n}}{2} \cos(\varphi_{n} - \theta_{n})$$ ## 15.3.2. Nonlinear dynamical load, sinusoidal voltage With a sinusoidal voltage, current harmonics do not lead to average power. However, current harmonics do increase the rms current, and hence they decrease the power factor. $$P_{av} = \frac{V_1 I_1}{2} \cos (\varphi_1 - \theta_1)$$ $$(\text{rms current}) = \sqrt{I_0^2 + \sum_{n=1}^{\infty} \frac{I_n^2}{2}}$$ $$(\text{power factor}) = \left(\frac{\frac{I_1}{\sqrt{2}}}{\sqrt{I_0^2 + \sum_{n=1}^{\infty} \frac{I_n^2}{2}}}\right) \left(\cos (\varphi_1 - \theta_1)\right)$$ = (distortion factor) (displacement factor) #### Distortion factor Defined only for sinusoidal voltage. (distortion factor) = $$\frac{\frac{I_1}{\sqrt{2}}}{\sqrt{I_0^2 + \sum_{n=1}^{\infty} \frac{I_n^2}{2}}} = \frac{\text{(rms fundamental current)}}{\text{(rms current)}}$$ Related to Total Harmonic Distortion (THD): (THD) = $$\frac{\sqrt{\sum_{n=2}^{\infty} I_n^2}}{I_1}$$ (distortion factor) = $$\frac{1}{\sqrt{1 + (THD)^2}}$$ ## Distortion factor vs. THD 15 ## Peak detection rectifier example 16 Conventional singlephase peak detection rectifier Typical ac line current spectrum ### Maximum power obtainable from 120V 15A wall outlet ``` with peak detection rectifier ``` ``` (ac voltage) (derated breaker current) (power factor) (rectifier efficiency) ``` $= (120 \text{ V}) \quad (80\% \text{ of } 15 \text{ A}) \quad (0.55)$ (0.98) $= 776 \, \text{W}$ at unity power factor (ac voltage) (derated breaker current) (power factor) (rectifier efficiency) = (120 V) (80% of 15 A) (0.99) 17 (0.93) = 1325 W ## 15.4. Power phasors in sinusoidal systems Apparent power is the product of the rms voltage and rms current It is easily measured —simply the product of voltmeter and ammeter readings Unit of apparent power is the volt-ampere, or VA Many elements, such as transformers, are rated according to the VA that they can supply So power factor is the ratio of average power to apparent power With sinusoidal waveforms (no harmonics), we can also define the real power P reactive power Q complex power S If the voltage and current are represented by phasors V and I, then $$S = VI^* = P + jQ$$ with I^* = complex conjugate of I, j = square root of -1. The magnitude of S is the apparent power (VA). The real part of S is the average power P (watts). The imaginary part of S is the reactive power Q (reactive volt-amperes, or VARs). ## Example: power phasor diagram The phase angle between the voltage and current, or $(\phi_1 - \theta_1)$, coincides with the angle of S. The power factor is power factor = $$\frac{P}{\|S\|} = \cos(\phi_1 - \theta_1)$$ In this purely sinusoidal case, the distortion factor is unity, and the power factor coincides with the displacement factor. ## Reactive power Q The reactive power Q does not lead to net transmission of energy between the source and load. When $Q \neq 0$, the rms current and apparent power are greater than the minimum amount necessary to transmit the average power P. *Inductor:* current lags voltage by 90°, hence displacement factor is zero. The alternate storing and releasing of energy in an inductor leads to current flow and nonzero apparent power, but P = 0. Just as resistors consume real (average) power P, inductors can be viewed as consumers of reactive power Q. Capacitor: current leads voltage by 90°, hence displacement factor is zero. Capacitors supply reactive power *Q*. They are often placed in the utility power distribution system near inductive loads. If \mathcal{Q} supplied by capacitor is equal to \mathcal{Q} consumed by inductor, then the net current (flowing from the source into the capacitor-inductive-load combination) isin phase with the voltage, leading to unity power factor and minimum rms current magnitude. # Lagging fundamental current of phasecontrolled rectifiers It will be seen in the next chapter that phase-controlled rectifiers produce a nonsinusoidal current waveform whose fundamental component lags the voltage. This lagging current does not arise from energy storage, but it does nonetheless lead to a reduced displacement factor, and to rms current and apparent power that are greater than the minimum amount necessary to transmit the average power. At the fundamental frequency, phase-controlled rectifiers can be viewed as consumers of reactive power Q, similar to inductive loads. ## 15.5. Harmonic currents in three phase systems The presence of harmonic currents can also lead to some special problems in three-phase systems: - In a four-wire three-phase system, harmonic currents can lead to large currents in the neutral conductors, which may easily exceed the conductor rms current rating - Power factor correction capacitors may experience significantly increased rms currents, causing them to fail In this section, these problems are examined, and the properties of harmonic current flow in three-phase systems are derived: - Harmonic neutral currents in 3ø four-wire networks - Harmonic neutral voltages in 3ø three-wire wye-connected loads ## 15.5.1. Harmonic currents in three-phase four-wire networks Fourier series of line currents and voltages: $$i_{a}(t) = I_{a0} + \sum_{k=1}^{\infty} I_{ak} \cos(k\omega t - \theta_{ak}) \qquad v_{an}(t) = V_{m} \cos(\omega t)$$ $$i_{b}(t) = I_{b0} + \sum_{k=1}^{\infty} I_{bk} \cos(k(\omega t - 120^{\circ}) - \theta_{bk}) \qquad v_{bn}(t) = V_{m} \cos(\omega t - 120^{\circ})$$ $$i_{c}(t) = I_{c0} + \sum_{k=1}^{\infty} I_{ck} \cos(k(\omega t + 120^{\circ}) - \theta_{ck})$$ $$i_{c}(t) = I_{c0} + \sum_{k=1}^{\infty} I_{ck} \cos(k(\omega t + 120^{\circ}) - \theta_{ck})$$ 23 $$v_{an}(t) = V_m \cos(\omega t)$$ $$v_{bn}(t) = V_m \cos(\omega t - 120^\circ)$$ $$v_{cn}(t) = V_m \cos(\omega t + 120^\circ)$$ #### Neutral current $$i_n(t) = I_{a0} + I_{b0} + I_{c0} + I_{b0} I$$ If the load is unbalanced, then there is nothing more to say. The neutral connection may contain currents having spectrum similar to the line currents. In the balanced case, $I_{ak} = I_{bk} = I_{ck} = I_k$ and $\theta_{ak} = \theta_{bk} = \theta_{ck} = \theta_k$, for all k; i.e., the harmonics of the three phases all have equal amplitudes and phase shifts. The neutral current is then $$i_n(t) = 3I_0 + \sum_{k=3,6,9,\cdots}^{\infty} 3I_k \cos(k\omega t - \theta_k)$$ #### Neutral currents $$i_n(t) = 3I_0 + \sum_{k=3,6,9,\cdots}^{\infty} 3I_k \cos(k\omega t - \theta_k)$$ - Fundamental and most harmonics cancel out - Triplen (triple-n, or 0, 3, 6, 9, ...) harmonics do not cancel out, but add. Dc components also add. - Rms neutral current is $$i_{n, rms} = 3 \sqrt{I_0^2 + \sum_{k=3,6,9,\dots}^{\infty} \frac{I_k^2}{2}}$$ A balanced nonlinear load produces line currents containing fundamental and 20% third harmonic: $i_{an}(t) = I_1 \cos(\omega t - \theta_1) + 0.2 I_1 \cos(3\omega t - \theta_3)$. Find the rms neutral current, and compare its amplitude to the rms line current amplitude. #### Solution $$i_{n, rms} = 3\sqrt{\frac{(0.2I_1)^2}{2}} = \frac{0.6 I_1}{\sqrt{2}}$$ $$i_{1, rms} = \sqrt{\frac{I_1^2 + (0.2I_1)^2}{2}} = \frac{I_1}{\sqrt{2}}\sqrt{1 + 0.04} \approx \frac{I_1}{\sqrt{2}}$$ - The neutral current magnitude is 60% of the line current magnitude! - The triplen harmonics in the three phases add, such that 20% third harmonic leads to 60% third harmonic neutral current. - Yet the presence of the third harmonic has very little effect on the rms value of the line current. Significant unexpected neutral current flows. # 15.5.2. Harmonic currents in three-phase three-wire networks Wye-connected nonlinear load, no neutral connection: #### No neutral connection If the load is balanced, then it is still true that $$i_n(t) = 3I_0 + \sum_{k=3,6,9,\cdots}^{\infty} 3I_k \cos(k\omega t - \theta_k)$$ But $i_n(t) = 0$, since there is no neutral connection. So the ac line currents cannot contain dc or triplen harmonics. #### What happens: A voltage is induced at the load neutral point, that causes the line current dc and triplen harmonics to become zero. The load neutral point voltage contains dc and triplen harmonics. With an unbalanced load, the line currents can still contain dc and triplen harmonics. #### Delta-connected load - There is again no neutral connection, so the ac line currents contain no dc or triplen harmonics - The load currents may contain dc and triplen harmonics: with a balanced nonlinear load, these circulate around the delta. # Harmonic currents in power factor correction capacitors PFC capacitors are usually not intended to conduct significant harmonic currents. Heating in capacitors is a function of capacitor equivalent series resistance (esr) and rms current. The maximum allowable rms current then leads to the capacitor rating: rated rms voltage $$V_{rms} = \frac{I_{rms}}{2\pi fC}$$ rated rms voltage $$V_{rms} = \frac{I_{rms}}{2\pi fC}$$ rated reactive power $= \frac{I_{rms}^2}{2\pi fC}$ ### 15.6. AC line current harmonic standards - 15.6.1. US MIL-STD-461B - 15.6.2. International Electrotechnical Commission Standard 555 - 15.6.3. IEEE/ANSI Standard 519 #### 15.6.1. US MIL-STD-461B - For loads of 1kW or greater, no current harmonic magnitude may be greater than 3% of the fundamental magnitude. - For the nth harmonic with n > 33, the harmonic magnitude may not exceed (1/n) times the fundamental magnitude. - Harmonic limits are now employed by all of the US armed forces. The specific limits are often tailored to the specific application. - The shipboard application is a good example of the problems faced in a relatively small stand-alone power system having a large fraction of electronic loads. # 15.6.2. International Electrotechnical Commission Standard 555 - First draft of their IEC-555 standard:1982. It has since undergone a number of revisions. - Enforcement of IEC-555 is the prerogative of each individual country, and hence it has been sometimes difficult to predict whether and where this standard will actually be given the force of law. - Nonetheless, IEC-555 is now enforced in Europe, making it a de facto standard for commercial equipment intended to be sold worldwide. - IEC-555 covers a number of different types of low power equipment, with differing harmonic limits. Harmonics for equipment having an input current of up to 16A, connected to 50 or 60 Hz, 220V to 240V single phase circuits (two or three wire), as well as 380V to 415V three phase (three or four wire) circuits, are limited. ## Low-power harmonic limits - In a city environment such as a large building, a large fraction of the total power system load can be nonlinear - Example: a major portion of the electrical load in a building is comprised of fluorescent lights, which present a very nonlinear characteristic to the utility system. - A modern office may also contain a large number of personal computers, printers, copiers, etc., each of which may employ peak detection rectifiers. - Although each individual load is a negligible fraction of the total local load, these loads can collectively become significant. #### IEC-555: Class A and B Class A: Balanced three-phase equipment, and any equipment which does not fit into the other categories. This class includes low harmonic rectifiers for computer and other office equipment. These limits are given in Table 15.1, and are absolute ampere limits. **Class B:** Portable tools, and similar devices. The limits are equal to the Table 15.1 limits, multiplied by 1.5. ## Class A limits Table 15.1. IEC-555 Harmonic current limits, Class A and certain Class C | Odd hai | rmonics | Even harmonics | | | |-------------------|----------------------|------------------|----------------------------|--| | Harmonic number | Maximum current | Harmonic number | Maximum curre | | | 3 | 2.30A | 2 | 1.08A | | | 5 | 1.14A | 4 | 0.43A | | | 7 | 0.77A | 6 | 0.30A | | | 9 | 0.40A | $8 \le n \le 40$ | $0.23\mathrm{A}\cdot(8/n)$ | | | 11 | 0.33A | | | | | 13 | 0.21A | | | | | $15 \le n \le 39$ | $0.15A \cdot (15/n)$ | | | | 36 #### IEC-555: Class C Class C: Lighting equipment, including dimmers and gas discharge lamps. The input current harmonics of ballasted lamps with an input power of more than 25W must meet the limits of Table 15.2, expressed as a percent of the fundamental current. If the input power is less than 25W, then Table 15.3 applies. Incandescent lamp fixtures containing phase-control dimmers, rated at greater than 600W, must meet the limits of Table 15.1. When testing for compliance, the dimmer must drive a rated-power lamp, with the phase control set to a firing angle of 90°±5°. Incandescent lamp dimmers rated at less than 600W are not covered by the standard. Discharge lamps containing dimmers must meet the limits of both Tables 15.2 and 15.3 at maximum load. Harmonic currents at any dimming position may not exceed the maximum load harmonic currents. ## Class C limits Table 15.2. IEC-555 Harmonic current limits, certain Class C | Harmonic number | Maximum current, percent of fundamental | |-------------------|---| | 2 | 2% | | 3 | (30%) · (power factor) | | 5 | 10% | | 7 | 7% | | 9 | 5% | | $11 \le n \le 39$ | 3% | #### IEC-555: Class D Class D: Equipment not covered by Class B or C, which has a special waveshape as defined below. This class is directed at diode-capacitor peak-detection rectifiers. Equipment is placed in class D if the ac input current waveshape lies within the shaded area for at least 95% of the duration of each half-cycle. The center line of the shaded area is set to coincide with the peak of the current waveform. A sinusoid, and a typical peak detection rectifier waveform, are shown for reference; the sinusoid is not Class D but the peak detection rectifier waveform is. The limits for Class D equipment are given in Table 15.3. ## Class D limits Table 15.3. IEC-555 Harmonic current limits, Class D and certain Class C | Odd harmonics | | | Even harmonics | | | |--------------------|-----------------------|-------------------------|--------------------|-----------------------|-----------------------| | Harmonic
number | Relative limit (mA/W) | $Absolute\ limit \ (A)$ | Harmonic
number | Relative limit (mA/W) | Absolute
limit (A) | | 3 | 3.6 | 2.30A | 2 | 1.0 | 0.3A | | 5 | 2.0 | 1.14A | 4 | 0.5 | 0.15A | | 7 | 1.5 | 0.77A | | | | | 9 | 1.0 | 0.40A | | | | | $11 \le n \le 39$ | $0.6 \cdot (11/n)$ | 0.33A | | | | #### 15.6.3. IEEE/ANSI Standard 519 - In 1993, the IEEE published a revised draft standard limiting the amplitudes of current harmonics, IEEE Guide for Harmonic Control and Reactive Compensation of Static Power Converters. - Harmonic limits are based on the ratio of the fundamental component of the load current IL to the short circuit current at the point of common (PCC) coupling at the utility I_{sc}. - Stricter limits are imposed on large loads than on small loads. The limits are similar in magnitude to IEC-555, and cover high voltage loads (of much higher power) not addressed by IEC-555. Enforcement of this standard is presently up to the local utility company. - The odd harmonic limits are listed in Tables 15.4 and 15.5. The limits for even harmonics are 25% of the odd harmonic limits. Dc current components and half-wave rectifiers are not allowed. # IEEE-519 current limits, low voltage systems Table 15.4. IEEE-519 Maximum odd harmonic current limits for general distribution systems, 120V through 69kV | I_{SC}/I_L | <i>n</i> < 11 | 11≤ <i>n</i> <17 | 17≤ <i>n</i> <23 | 23≤ <i>n</i> <35 | 35≤ <i>n</i> | THD | |--------------|---------------|------------------|------------------|------------------|--------------|-------| | <20 | 4.0% | 2.0% | 1.5% | 0.6% | 0.3% | 5.0% | | 20-50 | 7.0% | 3.5% | 2.5% | 1.0% | 0.5% | 8.0% | | 50-100 | 10.0% | 4.5% | 4.0% | 1.5% | 0.7% | 12.0% | | 100-1000 | 12.0% | 5.5% | 5.0% | 2.0% | 1.0% | 15.0% | | >1000 | 15.0% | 7.0% | 6.0% | 2.5% | 1.4% | 20.0% | # IEEE-519 current limits, high voltage systems Table 15.5. IEEE-519 Maximum odd harmonic current limits for general distribution systems, 69.001kV through 161kV | I_{SC}/I_L | <i>n</i> < 11 | 11≤ <i>n</i> <17 | 17≤ <i>n</i> <23 | 23≤ <i>n</i> <35 | 35≤ <i>n</i> | THD | |--------------|---------------|------------------|------------------|------------------|--------------|-------| | <20 | 2.0% | 1.0% | 0.75% | 0.3% | 0.15% | 2.5% | | 20-50 | 3.5% | 1.75% | 1.25% | 0.5% | 0.25% | 4.0% | | 50-100 | 5.0% | 2.25% | 2.0% | 0.75% | 0.35% | 6.0% | | 100-1000 | 6.0% | 2.75% | 2.5% | 1.0% | 0.5% | 7.5% | | >1000 | 7.5% | 3.5% | 3.0% | 1.25% | 0.7% | 10.0% | ## IEEE-519 voltage limits Table 15.6. IEEE-519 voltage distortion limits | Bus voltage at PCC | Individual harmonics | THD | |--------------------|----------------------|------| | 69kV and below | 3.0% | 5.0% | | 69.001kV-161kV | 1.5% | 2.5% | | above 161kV | 1.0% | 1.5% | It is the responsibility of the utility to meet these limits.