
Microprocessors Memory Map

Outline of the Lecture
• Memory Map of the IBM PC
• Pushing and Popping Operations (Stack)
• Flag Registers and bit fields

 MEMORY MAP OF THE IBM PC

 The 20-bit address of the 8086/8088 allows 1M byte of (1024 K bytes) memory space with the
address range 00000-FFFFF.

 The allocation of the memory is called a memory map.

RAM: Memory locations from 00000H to 9FFFFH (640K) are set aside for RAM. In an IBM PC
the DOS operating system first allocates the available RAM on the PC for its own use and let the
rest be used for applications such as word processors.
 The amount of memory used by DOS varies among its various versions. That is why we do
not assign any values for the CS, DS, SS, and ES. Memory management functions within DOS
handle this for the operating system.

Video RAM: Memory locations from A0000H to BFFFFH (128K) are set aside for video. This
amount varies depending on the video board installed on the PC.

ROM: Memory locations from C0000H to FFFFFH (256K) are set aside for ROM. First 64 K bytes
is used by BIOS (Basic Input/Output System) ROM. Some of the remaining space is used for
adapter cards.
Function of BIOS ROM:
• CPU can only execute programs that are stored in memory, there must be some permanent

(nonvolatile) memory to hold the programs telling the CPU what to do when the power is turned
on.

• BIOS contains programs to test RAM and other components connected to the CPU.

00000H

9FFFFH
A0000H

BFFFFH
C0000H

FFFFFH

 RAM
640K

 Video Display
RAM 128K

ROM
256K

 STACK: PUSHING AND POPPING OPERATIONS

What is a stack, and why is it needed?

The stack is a section of read/write memory (RAM) used by the CPU to store information
temporarily. CPU needs this storage area since there are only limited number of registers.
How stacks are accessed

 SS (stack segment) and SP (stack pointer) must be loaded to access stack in the memory.
 Every register in the CPU (except segment registers and SP) can be stored in the stack and

loaded from the stack.
Pushing onto the stack

 Storing the CPU register in the stack is called a push.

Ex: SP=1236, AX=24B6, DI=85C2, and DX=5F93, show the contents of the stack as each
instruction is executed.

PUSH AX
 PUSH DI
 PUSH DX
Solution:

• Note that in 80x86 the lower byte of the register is stored to the lower address.
Popping the stack

 Loading the contents of the stack into the CPU register is called a pop.

Ex: assume that the stack is shown below, and SP=18FA, show the contents of the stack and
registers as each of the following instructions is executed.
 POP CX
 POP DX
 POP BX
Solution:

SS:1230

SS:1231

SS:1232

SS:1233

SS;1234

SS;1235

SS:1236

B6

24

C2

85

B6

24

93

5F

C2

85

B6

24

START

SP=1236

After
PUSH AX
SP=1234

After
PUSH DI
SP=1232

After
PUSH DX
SP=1230

23

14

6B

2C

91

F6

SS:18FA

SS:18FB

SS:18FC

SS:18FD

SS;18FE

SS;18FF

SS:1900

6B

2C

91

F6

91

F6

After
POP DX
SP=18FE
DX=2C6B

After
POP CX
SP=18FC
CX=1423

After
POP BX
SP=1900
BX=F691

START

SP=18FA

Logical vs. physical address of the stack
 Calculating the physical address for the stack, the same principle is applied as was used for the

code and data segments. Physical address depends on the value of stack segment (SS) register
and the stack pointer (SP).

Ex: If SS=3500H and SP:FFFEH
a) Calculate the physical address: 35000+FFFE = 44FFE
b) Calculate the lower range of the stack: 35000+0000 = 35000
c) Calculate the upper range of the stack segment: 35000+FFFF = 44FFF
d) Show the logical address of the stack: 3500:FFFE

 THE FLAG REGISTER (FR) AND BIT FIELDS

 The flag register is a 16-bit register sometimes referred as the status register. Although the
register is 16-bit. Not all the bits are used.

 Conditional flags: 6 of the flags are called the conditional flags, meaning that they indicate
some condition that resulted after an instruction was executed. These 6 are: CF, PF, AF, ZF, SF,
and OF.

 The 16 bits of the flag registers:

CF, the Carry Flag: This flag is set whenever there is a carry out, either from d7 after an 8-bit
operation, or from d15 after a 16-bit data operation.

PF, the Parity Flag: After certain operations, the parity of the result’s low-order byte is checked. If
the byte has an even number of 1s, the parity flag is set to 1; otherwise, it is cleared.

AF, the Auxiliary Carry Flag: If there is a carry from d3 to d4 of an operation this bit is set to 1,
otherwise cleared (set to 0).

ZF, the Zero Flag: The ZF is set to 1 if the result of the arithmetic or logical operation is zero,
otherwise, it is cleared (set to 0).

SF, the Sign Flag: MSB is used as the sign bit of the binary representation of the signed numbers.
After arithmetic or logical operations the MSB is copied into SF to indicate the sign of the result.

TF, the Trap Flag: When this flag is set it allows the program to single step, meaning to execute
one instruction at a time. Used for debugging purposes.

IF, Interrupt Enable Flag: This bit is set or cleared to enable or disable only the external interrupt
requests.

DF, the Direction Flag: This bit is used to control the direction of the string operations.

OF, the Overflow Flag: This flag is set whenever the result of a signed number operation is too
large, causing the high-order bit to overflow into the sign bit.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R R R R OF DF IF TF SF ZF U AF U PF U CF

R= reserved SF= sign flag
U= undefined ZF= zero flag
OF= overflow flag AF= auxiliary carry flag
DF= direction flag PF= parity flag
IF= interrupt flag CF= carry flag
TF= trap flag

Maddox38
Typewritten Text

Maddox38
Typewritten Text
Source: http://opencourses.emu.edu.tr/pluginfile.php/827/mod_resource/content/0/Lecture_Notes/eee410_Lecture4.pdf

