Instrument Transformer

- In power system, the currents and voltages are very large
 - Therefore, their direct measurements are not possible.

- It might appear that the extension of range could be conveniently done by the use of shunts for currents and multiplier for voltage measurement, as in DC.
 - But this method is suitable only for small values of current and voltage.
 - Difficult to achieve accuracy with a shunt on AC
 - Capability of having shunt of large range is not possible
 - The power consumed by multipliers become large as the voltage increases
 - The measuring circuit is not isolated electrically from the power circuit

- The solution is to step-down these currents/voltages with the help of Instrument Transformer
 - So that, they could be metered with instruments of moderate size
Current Transformer (C.T.):
- Transformers used for current measurement
- Steps down the current to the level of ammeter.

Voltage Transformer (V.T. or P.T.):
- Transformers used for voltage (Potential) measurement
- Steps down the voltage to the level of voltmeter.

- Used in AC system for the measurement of current, voltage, power and energy.

- Finds a wide application in protection circuits of power system
 - Ex. over current, under voltage, earth fault, etc.
Advantages of Instrument Transformer:

- Their reading do not depend upon circuit constant such as R, L & C
 - As in the case of shunts and multipliers
- Possible to standardize the instrument around their ratings.
 - This makes the replacement of instrument transformer very easy.
- The measuring circuit is isolated from the power circuit
- Low power consumption in the metering circuit
- Several instrument can be operated from a single instrument transformer
Ratios of Instrument Transformer:

Transformation Ratio, \(R = \frac{I_{Pri}}{I_{Sec}} \) for a C.T.

and \(R = \frac{V_{Pri}}{V_{Sec}} \) for a P.T.

Nominal Ratio, \(K_n = \frac{\text{Rated } I_{Pri}}{\text{Rated } I_{Sec}} \) for a C.T.

\(= \frac{\text{Rated } V_{Pri}}{\text{Rated } V_{Sec}} \) for a P.T.

Turns Ratio, \(n = \frac{N_{sec}}{N_{Pri}} \) for a C.T.

\(= \frac{N_{Pri}}{N_{Sec}} \) for a P.T.

Ratio Correction Factor (RCF) = \(\frac{\text{Transformation Ratio}}{\text{Nominal Ratio}} = \frac{R}{K_n} \)

or \(R = RCF \times K_n \)

– The ratio marked on the transformer is their nominal ratio

– What is the meaning of KVA reading on the Transformer
Current Transformer:

- Primary winding is connected in series with line carrying the current to be measured
 - Therefore, $I_{\text{Pri}} \propto \text{Load}$

- Primary winding consists of very few turns
 - Therefore, no appreciable voltage drop across it

- Secondary winding has a larger number of turns
 - Exact number is being determined by the turn ratio
Relationship in a C.T.:

- r_s and x_s = resistance and reactance of secondary winding
- r_e and x_e = resistance and reactance of external burden
- E_p and E_s = primary and secondary winding induced voltage
- N_p and N_s = number of primary and secondary winding turns
- V_s = voltage at secondary winding terminals
- I_p and I_s = primary and secondary winding currents
- Φ = working flux of the transformer
- θ = phase angle of transformer (angle between I_s reversed and I_p)
- δ = angle between E_s and I_s
- Δ = phase angle of secondary winding load circuit
- I_o = exciting current
- I_m and I_e = magnetizing and loss component of I_o
- α = angle between I_o and Φ

- Expression for Transformation Raito is derived on board
Errors in C.T.:

• The secondary winding current is not a constant fraction of the primary winding current
 – depend upon magnetizing and loss component of exciting current
 – this introduces considerable errors into current measurements

\[
\text{ratio error} = \left(\frac{K_n}{R}\right) - \frac{R}{R}
\]

• It is necessary that the phase of \(I_s\) shall be displaced exactly by 180° from \(I_p\).
 – but, it is displaced by an angle \(\theta\).
Characteristic of C.T.:

- **Effect of change of \(I_p \)**
 - If \(I_p \) changes, \(I_s \) also changes proportionally
 - At low values of \(I_p \), the current \(I_m \) and \(I_e \) are a great portion of \(I_p \)
 - Therefore, errors are greater
 - As the \(I_p \) increases, \(I_s \) increases and results in decrement of R.

- **Effect of change of \(I_s \)**
 - Increment in \(I_s \) means increase in Volt-Ampere rating
 - This increases the secondary winding induced voltage
 - Therefore, \(I_m \) and \(I_e \) are increased
 - Thus, the errors will be increased.

- **Effect of change of Frequency**
 - Increase in frequency will result in proportionate decrease in flux density
Means to reduce the error in C.T.:

• Ideally, \(R=n \) and \(\theta=0 \)
 – But, as a result of physical limitations inherent in electric and magnetic circuit, the ideality will be lost and errors are induced

• The expression of \(R \) and \(\theta \) indicates that
 – Both depend upon the \(I_c \) and \(I_m \) respectively
 • Thus, they are chosen small.
 – Specific design feature will help in minimization of the errors
Core:

- Core must have a low reluctance and low core loss
- Reduction of reluctance flux path can be done by
 - using materials of high permeability
 - short magnetic path
 - large cross section of core
 - Low value of flux density
- The number of joints in building up core should be minimum
 - because joints produce air gape
 - which offer path of high reluctance for the flux
- Core loss is reduced by choosing materials of low hysteresis and low eddy current losses
Effect of secondary winding open

• C.T. are always used with the secondary winding closed
 – Never open the secondary windings circuit of a C.T. while its primary winding is energized
 – Failure to this may lead to serious consequences for both

• In case of P.T., the current flowing in the primary winding is largely the reflection of that flowing in the secondary circuit.
 – whereas, in case of a C.T., the primary winding is connected in series with the line whose current is being measured
 – This current is in no ways controlled or determined by the condition of secondary winding circuit

• Under normal operating conditions, both primary and secondary windings produces mmf, which act against each other
 – The secondary mmf is slightly less than the primary mmf
 • Thus, the resultant mmf is small
– The resultant \textit{mmf} maintains the flux in core and supply the iron losses
 • since the resultant \textit{mmf} is small, the flux density is also quite low
 • hence, a small voltage is induced in the secondary winding

• If the secondary winding is open-circuited when the primary winding is carrying current
 – the primary \textit{mmf} remains same while the open secondary \textit{mmf} reduces to zero
 • therefore, the resultant \textit{mmf} is very large (i.e., equal to primary \textit{mmf} = I_p N_p)
 – this large \textit{mmf} produces a large flux in core till it saturates
 – this large flux linking the turn of secondary winding would induce a high voltage in the secondary winding which could be dangerous
 • to the transformer insulation and to the person operating it
 – Also, the eddy current and hysteresis loses would be very high under this condition
 • thus the transformer may be overheated and completely damaged
 • Even if this does not happen, the core may become permanently magnetized and give erroneous results.