Flow Measurement
Basic Flow Measurement

- Many methods of flow measurement
- Bernoulli’s Equation
 - A statement of energy conservation

\[p + \frac{1}{2} \rho v^2 + \rho g y = \text{constant} \]
Flow Pattern
Orifice Plate
Typical Orifice Plates
Beveled Edge on Orifice
Typical Transmitter Installation
Flange Taps
Vena Contracta Taps
Pro’s and Con’s

- High delta P
- Lots of data
- Low cost
- Easy replacement

- High pressure loss
- Erosion
Venturi Tube
Flow Nozzle
Elbow Taps
Pitot Tube
Annubar
Annubar
Annubar
Annubar
Annubar
Output of the Transmitter ΔP
Square Root Extractor
Flow Loop with Square Root Extractor
Extractor at Low Inputs

\[
\text{Output} = \sqrt{\text{Input}}
\]

Input % Change

Square Root Extractor
Cutoff Relay
Effect of Process Conditions

- Flow measurements are inferential
 - Measure a pressure drop and infer a flow
- Affect by density of the fluid
 - Temperature
 - Pressure
 - Increasing density increases the indicated flow rate
Density Compensating

Flow

High Pressure Sensing Line

RTD

Low Pressure Sensing Line

Pressure Cell

DP Cell

Logic

4-20 mA Output
Flow Measurement Errors

- Erosion
- Over ranging the D/P cell
- Vapour formation in the throat
- Clogging
- Plugged or leaking impulse lines
For you to do

- Read pp. 18-32
- Answer Questions pp. 82-85, #6-14