Conversion Of SR Flip-Flop To JK Flip-Flop

written by: shankar • edited by: KennethSleight • updated: 11/30/2009

Converting one type of flip-flop to another flip-flop is a very important technique in Digital electronics. Learn in detail about the conversion of SR flip-flop into JK flip-flop.

Introduction

In the previous article we discussed about the realization of D flip-flop using SR flip-flop. In this article let's discuss about the conversion of RS flip-flop into JK flip-flops. We know that Jk flip-flops are one of the important and most widely used flip-flops. So often there is a need for conversion of other type of flip-flops into JK flip-flops. Let us discuss about this conervsion in detail.

The Transformation

Before dealing with the conversion let's summarize the truth table of JK flip flop circuits.

```
0.0.0
0
1
llll
llll
```

From the truth table it's quite evident that 4 main transitions occur between the current state and next state of JK flip-flop.

They are $0->0 ; 0->1 ; 1->0 ; 1->1$.

0-> 0 Transition:

For both the present state and the next state to remain in 0 , the J input must remain at 0 and the K input can either be 1 or 0 . In simple words, irrespective of the value of K input, the present state and next state remains in 0 , if the value of J input is 0 .

0->1 Transition:

This is the transition where the present state is 0 , but the next state should change to 1 . For this transition to occur the value of J input should be 1 and K input can either be 0 or 1 . When K value is 0 , it is called SET condition ($\mathrm{J}=1$ and $\mathrm{K}=0$, SET condition) and when K value is 1 , it is called toggle condition. ($\mathrm{J}=1$ and $\mathrm{K}=1$, TOGGLE condition). So for this transition to occur J has to be high, but K can be either high or low.

1-> 0 Transition:

In this case the present state is 1 and the next state should be 0 . For this transition to occur the value of K input should be 1 and the value of J input can be either 0 or 1 . Irrespective of the J input, the transition occurs if the value of K remains at 1 .

1->1 Transition:

For this transition to occur the value of K should remain low or 0 , irrespective of the value of J . J can be either 1 or 0 . The value of J will not affect this transition.

From the above transitions we can form the excitation table as shown below.

The four transitions and excitation table of RS flip-flop is shown below.

Q_{\star}	Q_{n-1}	R	S
0	0	X	0
0	1	0	1
1	0	1	0
1	1	0	x

Steps to Convert RS flip-flop to JK Flip-flop

- Form the excitation table using $S, R, J, K, Q(n)$ and $Q(n+1)$.
- When J and K inputs are 0 and $Q(n)$ is 0 , Then the next state $Q(n+1)$ is also 0 . The R an S inputs corresponding to this transition are X and 0 respectively. X is nothing but don't care condition. In simple words the value of R will not affect the next state of the system. Irrespective of the value of R input, the present state and the next state remains in 0 , if the value of S input is 0 . Similarly when the inputs J and K are 0 and the present state $\mathrm{Q}(\mathrm{n})$ is 1 , then the value of the present state is retained for next state too. This is nothing but the $1->1$ transition. The S and R input values corresponding to this transition is $S=X$ and $R=0$. That is S input can be either 0 or 1 .
- Consider when J input is 0 and K input is 1 . During this condition, the present state is 0 and the same is retained for the next state also. So both the present and next state is 0 and there is a $0->0$ transition. The value of R and S inputs corresponding to this $0->0$ transition is $S=0$ and $R=X$. The value of R input does not affect the state of the system. So it is denoted as X. Similarly when $J=0$ and $K=1$ and the present state $Q(n)$ is 1 , then the next state switches to 0 . So in this condition a 1->0 transition occurs. Now the value of RS inputs can be
derived from RS excitation table. From the excitation table the value of R and S inputs corresponding to this transition is $\mathrm{S}=0$ and $\mathrm{R}=1$.
- Similarly the entire excitation table for conversion of RS to JK flip-flop can be derived. The excitation table is as shown.
- Draw the K-map for R and S inputs separately using J and $\mathrm{K} \mathrm{Q}(\mathrm{n})$. Where J and K are inputs of JK flip-flop and $\mathrm{Q}(\mathrm{n})$ is the present state of the flip-flop

- From the K-map we can form a relation between SR and JK flip-flops. A characteristic equation can be obtained which expresses R and S in-terms of J and K. Using this characteristic equation, a logic diagram can be formed which is nothing but the pictorial representation of SR to JK conversion.
- From the K-map the characteristic equation is $S=J$. $Q^{\prime}(n)$ and $R=K$. Q (n). The Characteristic equation is pictorially represented as logic diagram.

Source:

http://www.brighthubengineering.com/diy-electronics-devices/57873-conversion-of-sr-flip-flop-to-jk-flip-flop/

