AC CIRCUIT PHASE SEQUENCE

Phase sequence is the order in which the generated voltages in the phase winding of an alternator reach or attain their peak or maximum values. It is represented by the letters a, b, and c or the numbers 1, 2, 3 or by using double letter as ab, bc and ca or an, bn and cn.

For instance, The three phase balanced voltages with their common magnitudes as K have sequence of a b c , then in complex form,

Positive Phase Sequence

ABC sequence - $V_a = Ka0^\circ$, $V_b = a-120^\circ$ and $V_c = Ka-240^\circ$

In this sequence V_b lags V_a by 120° and V_c lags V_b by 120 or V_c lags V_a by 240. The maximum value of V_a comes first in the positive direction, next V_b and then V_c.

ABC →BCA →CAB
AB - BC - CA → BC - CA - AB → CA - AB - BC
AN - BN - CN → BN - CN - AN → CN - AN - BN

Vector Representation

![Sequence ABC](image)
Negative Phase sequence

ACB sequence- $V_a = \text{ka} 0^\circ$, $V_b = \text{ka} -120^\circ$ and $V_c = \text{ka} -240^\circ$

Voltage V_c lags V_a by 120° and voltage V_b lags V_c by 120°.

ACB → CBA → BAC

AB - CA - BC → CA - BC - AB → BC - AB - BA
AN - CN - BN → CN - BN - AN → BN - AN - CN

Vector representation
Assume a positive phase sequence if the phase sequence is not given. The three-phase alternators are designed to operate with positive phase sequence voltages.

Source: http://www.engineermaths.com/2012/02/ac-circuit-phase-sequence.html