
Using NSD, an Authoritative-Only
DNS Server, on Ubuntu 14.04

Introduction
Setting up a DNS server to be responsible for domain names can be a
complex task even for seasoned administrators. DNS zone management
is a vital duty, but can be bewildering, especially when attempting to get
started.

Software like the Bind DNS server is incredibly flexible and can be
configured to operate as many of the components in the overall DNS
hierarchy. However, that flexibility also means that Bind is not optimized
for any one task. This has a few side effects.

Most of the time there are huge chunks of functionality that your
configuration has no need for. This additional complexity makes
management more difficult. It also means that the software itself will be
less responsive for any one task.

To solve this problem, alternative DNS servers have been created that
specialize in a single area of DNS resolution. A piece of software known
as NSD is an authoritative-only DNS server that is ideal for managing
DNS zones authoritatively. Without the need to ever worry about
recursion or caching, this server operates with high performance and a
lower footprint.

In this guide, we will demonstrate how to install and configure NSD to
securely administer our DNS zones on Ubuntu 14.04 servers.

Prerequisites and Goals
Before you begin with this guide, you should be familiar with some basic
DNS concepts and terminology. If you need help understanding what an

https://www.digitalocean.com/community/tutorials/an-introduction-to-dns-terminology-components-and-concepts
https://www.digitalocean.com/community/tutorials/an-introduction-to-dns-terminology-components-and-concepts

authoritative-only DNS server is used for, check out our guide on the
differences between DNS server types.

As an authoritative-only DNS server, NSD does not provide any caching,
forwarding, or recursive functionality. It only responds to iterative
requests for the zones it controls. It can also refer resolvers to other
name servers for zones that it has delegated away.

For the purposes of this guide, we will be configuring two servers with
NSD software to act as our master and slave servers for our zones. We
will also provide configuration data that will let clients reach a web server
on a third host.

We will be using the dummy domain example.com for this guide. You should
substitute your own domain to follow along. The machines that we will be
configuring will have the following properties:
Purpose DNS FQDN IP Address

Master name server ns1.example.com. 192.0.2.1

Slave name server ns2.example.com. 192.0.2.2

Web Server www.example.com. 192.0.2.3

After you are finished with this guide, you should have the first two
servers configured with NSD to act as authoritative-only server for your
zones. You will be able to use the host names that we configure to reach
your servers from the internet, as well as find out the host names by
querying the IP addresses. Any resolving client capable of reaching our
servers will be able to get the domain data from our servers.

Setting the Hostname on the Name Servers
The first step that we need to take is a preparatory one. Before worrying
about the DNS configuration, we need to make sure our name servers
can correctly resolve their own hostname in the way we require.

On your first DNS server, edit the /etc/hosts file to set up the FQDN of
this computer:
sudo nano /etc/hosts

https://www.digitalocean.com/community/tutorials/a-comparison-of-dns-server-types-how-to-choose-the-right-dns-configuration
https://www.digitalocean.com/community/tutorials/a-comparison-of-dns-server-types-how-to-choose-the-right-dns-configuration

In our case, we need to map the 192.0.2.1 IP address to our first name
server's full name,ns1.example.com. We can do this by replacing the line
that specifies our host name with our public IP address, the FQDN, and
the shortened alias for our host:
127.0.0.1 localhost
192.0.2.1 ns1.example.com ns1
Save and close the file when you are finished.

Next, we need to double-check the /etc/hostnames file:
sudo nano /etc/hostnames

This should contain the value of our unqualified host name. Modify it if
necessary:

ns1
Save and close the file when you are finished.

If you modified the /etc/hostnames file above, tell the system to re-read
the file:
sudo hostname -F /etc/hostname

We are done with our first DNS server for the time being. Repeat the
steps on the second server.

Modify the /etc/hosts file to specify the second DNS server's host:
sudo nano /etc/hosts
127.0.0.1 localhost
192.0.2.2 ns2.example.com ns2

Check the /etc/hostname file as well. This should only have the short
unqualified name:
sudo nano /etc/hostname
ns2

Again, make the system re-read the file if you had to modify anything:

sudo hostname -F /etc/hostname
Your servers can now resolve their own names without using DNS. You
are now ready to set up NSD on your servers.

Install NSD on Both Name Servers
The next step is to actually install the software on your name servers.

Before we begin, we actually have to take one additional preparatory
step. The NSD package in the repos installs the software, configures
some components, and attempts to start the service. The service
expects to run as a user called nsd, but the package does not actually
create this user account.
To avoid an error upon installation, we will create this user before we
install the software. On each of your machines, create the nsd system
user by typing:
sudo useradd -r nsd
This will create the correct account needed to complete the installation
successfully.

Now, we just need to install the NSD software. Luckily, NSD is included
in the Ubuntu 14.04 repositories, so we can just use apt to pull it down.
We will update our local package index and then download the
appropriate package:
sudo apt-get update
sudo apt-get install nsd
This will install the software and do some initial configuration. It will also
start the service, even though we have not configured it to serve
anything yet.

Configure the Master NSD Server
We will begin by setting up our ns1 server, which will be configured as
the master DNS server for our zones.
The first thing we should do is make sure all of the SSL keys and
certificates that NSD uses to securely communicate between the
daemon portion of the application and the controller are generated.

To do this, type:

sudo nsd-control-setup

There are probably already keys and certificates present in
the /etc/nsd directory, but this command will generate anything that is
missing.

Configure the nsd.conf File

The main configuration file for NSD is a file called nsd.conf located in
the /etc/nsddirectory.
There is a file containing only a few comments already in this directory,
but we will use a more fully commented example file as our template.
Copy this now to overwrite the current file:

sudo cp /usr/share/doc/nsd/examples/nsd.conf /etc/nsd/nsd.conf

Now, open the new file in your text editor with sudo privileges:

sudo nano /etc/nsd/nsd.conf
Inside, you will see a number of commented configuration lines
organized into sections. The main sections are server, remote-
control, key, pattern, and zone. We will use most of these for our
configuration.
To start with, we should configure the basic properties of our DNS server
in the serversection. We will be handling basic IPv4 traffic on the default
DNS port 53. We will use thensd user we set up earlier. Most of these will
be the default values, but we will uncomment the associated lines to
make their values explicit.
We also want to explicitly set the directory that contains our zone data,
and our log and pid file locations. There are many other configuration
choices that you can set for this section, but we are going to keep it
relatively simple. Feel free to make additional changes.

Our server section will look like this:

server:
 do-ip4: yes
 port: 53
 username: nsd
 zonesdir: "/etc/nsd"
 logfile: "/var/log/nsd.log"
 pidfile: "/run/nsd/nsd.pid"

Next, let's take a look at the remote-control section. This section is a bit
of a misnomer because it is not only used for remote control of our
daemon. We are going to configure this to control the daemon locally.
First, we need to enable the resource and set its interface and port
number. This can all be done by uncommenting the appropriate lines
and changing the control-enable directive to "yes".

Next, we can uncomment the lines that specify the key and certificate
files. These match the file names generated when we ran the nsd-
control-setup command and should not need to be modified once they
are uncommented.
Our values for this section should look like this:

remote-control:
 control-enable: yes
 control-interface: 127.0.0.1
 control-port: 8952
 server-key-file: "/etc/nsd/nsd_server.key"
 server-cert-file: "/etc/nsd/nsd_server.pem"
 control-key-file: "/etc/nsd/nsd_control.key"
 control-cert-file: "/etc/nsd/nsd_control.pem"

Next, we will configure the key section. This section will contain the
secret keys that NSD will use to securely execute zone transfers
between our master and slave servers.
We need to set the name and algorithm that will be used. We will use the
name demokey for our example. We will also use the default algorithm
(hmac-sha256) that they have selected.
For the secret itself, we will take the advice in the comment on how to
securely generate one. Exit the text editor. In your terminal, run the
following command:

dd if=/dev/random of=/dev/stdout count=1 bs=32 | base64

You will receive a randomly generated key in the output of the
command:

0+1 records in
0+1 records out
19 bytes (19 B) copied, 0.000571766 s, 33.2 kB/s
+kO0Vu6gC+9bxzMy3TIZVLH+fg==
Copy the output in red above and open your configuration file again. Use
the copied output as the value of the secret parameter. This section
should look like this:
key:
 name: "demokey"
 algorithm: hmac-sha256
 secret: "+kO0Vu6gC+9bxzMy3TIZVLH+fg=="
Next, we'll set up a simple pattern since we have some repetitive
information involving our slave server. We will be notifying and

transferring our zones to the same slave each time, so creating a pattern
makes sense.

We will call our pattern toslave to describe what the pattern will be used
for. We will set the name and file for each zone individually, so we don't
need to worry about that in the pattern.
We want to set the notify parameter in our pattern to reference our
slave server's IP address. We also want to use the key that we specified
to securely transfer the zones with TSIG. We will set up the provide-
xfr parameter exactly the same way.
In the end our pattern section should look like this:
pattern:
 name: "toslave"
 notify: 192.0.2.2 demokey
 provide-xfr: 192.0.2.2 demokey

Finally, we get to our zone section. Here, we configure how NSD will
handle our specific zones and their associated files.
First, we will configure our forward zone. We need to set up the zone for
our example.comzone. This is as simple as specifying the domain itself
under the name parameter, specifying the name we will use for the zone
file, and including the pattern we created above in order to transfer this
to our slave server.
The finished forward zone for our demo should look like this:

zone:
 name: "example.com"
 zonefile: "example.com.zone"
 include-pattern: "toslave"

Next, we can take care of the reverse zone. A reverse zone is basically a
zone file that allows DNS software to map an IP address back to a host
name for clients. In general, with hosting like DigitalOcean, this is taken
care of by the hosting provider.

For instance, with DigitalOcean, you are not delegated responsibility for
a range of IP addresses to set up reverse mappings. Instead,
DigitalOcean automatically creates the necessary reverse mappings if
you set the host name of the server in the control panel to the FQDN you
would like it mapped back to.

You can learn more about reverse mappings by reading the "A Bit About
Reverse Zones" section of the Bind authoritative-only guide. We will
show you how to set up the reverse zones for NSD for informational
purposes and for greater flexibility, even though this will only be relevant
in situations where you have been delegated control over the reverse
mappings for a block of IPs.

For a reverse zone, we take the first three octets of the IP address,
reverse them, and add them as subdomain delegations onto the special
domain in-addr.arpa. This is how the DNS system searches for IP
addresses using the same lookup methods as regular domains. For our
case, we will be making a reverse zone that defines the 2.0.192.in-
addr.arpa mapping. This will look very similar to the forward zone
specification:
zone:
 name: "2.0.192.in-addr.arpa"
 zonefile: "192.0.2.zone"
 include-pattern: "toslave"
Save and close the file when you are finished.

Create the Forward Zone File
Now, we need to create the forward zone file. In our configuration, we
named the zone file as "example.com.zone". We will have to create a file
with this name in our /etc/nsd directory.
Open that file up in your text editor with sudo privileges:

sudo nano /etc/nsd/example.com.zone
The first thing we need to do is set a few parameters up top. We will set
the $ORIGINparameter which points to the domain we are configuring in
FQDN format (complete with the ending dot). We also want to set the
default time-to-live. We will use 1800 seconds, or 30 minutes:
$ORIGIN example.com.
$TTL 1800
Next, we need our SOA, or start of authority record. This will look like
this:

@ IN SOA ns1.example.com. admin.example.com. (
 2014070201 ; serial number
 3600 ; refresh

https://www.digitalocean.com/community/tutorials/how-to-configure-bind-as-an-authoritative-only-dns-server-on-ubuntu-14-04

 900 ; retry
 1209600 ; expire
 1800 ; ttl
)

This defines some zone-wide values. The ns1.example.com. value is
used to specify the domain location of one of the authoritative servers for
this zone. The admin.example.com. is used to specify an email address
where the zone administrators can be reached.
The email address, in this case is admin@example.com. In a DNS zone file,
the "@" symbol must be changed into a dot. The ending dot is also
important, as they always are when specifying a FQDN.
The values in the parentheses define some of the values for our zone.
The only one we will mention here is the serial number. This
value must be incremented every time that you make a change to the
zone file. Here, we are demonstrating using the date of this writing (July
02, 2014) plus a revision number.

Next, we need to use NS records to define the name servers that are
authoritative for this zone. Remember to use the FQDN for your domain,
including the ending dot:

 IN NS ns1.example.com.
 IN NS ns2.example.com.
Next, we need to set up the A records that will actually tell clients how to
reach the name servers we specified. This is what maps our host names
to their actual IP addresses:

ns1 IN A 192.0.2.1
ns2 IN A 192.0.2.2

Finally, we want to add any additional A records for our other hosts. In
our case, we will be setting up our base domain (example.com) and
the www hostname to map to our web server:
@ IN A 192.0.2.3
www IN A 192.0.2.3
When you are finished, your completed file should look like this:

$ORIGIN example.com.
$TTL 1800
@ IN SOA ns1.example.com. admin.example.com. (
 2014070201 ; serial number

 3600 ; refresh
 900 ; retry
 1209600 ; expire
 1800 ; ttl
)
; Name servers
 IN NS ns1.example.com.
 IN NS ns2.example.com.

; A records for name servers
ns1 IN A 192.0.2.1
ns2 IN A 192.0.2.2

; Additional A records
@ IN A 192.0.2.3
www IN A 192.0.2.3

Save and close the file when you are finished.

Create the Reverse Zone File
Next, we will make a similar file for our reverse zone. Remember that
this is only necessary if you have been delegated responsibility for the
reverse mapping of a block of addresses.

Create the reverse zone file that you referenced in your nsd.conf file and
open it with sudo privileges in your text editor:
sudo nano /etc/nsd/192.0.2.zone

Again, we will start off by defining the $ORIGIN and $TTL parameters. This
time, remember to set the origin to the in-addr.arpa subdomain for your
zone. In our case this will look like this:
$ORIGIN 2.0.192.in-addr.arpa.
$TTL 1800

Next, we need to set the SOA records, just as before. We can pretty
much use the exact same values for this file since the same email and
authoritative name server are responsible for both zones. Furthermore,
the numerical values should work in this instance as well. Remember to
modify the serial number though every time you make a change:

@ IN SOA ns1.example.com. admin.example.com. (
 2014070201 ; serial number
 3600 ; refresh
 900 ; retry
 1209600 ; expire

 1800 ; ttl
)
When you are finished, the file should look like this:

Again, we need to define the name servers that are authoritative for the
zone. These will be the same servers again:

 IN NS ns1.example.com.
 IN NS ns2.example.com.
Finally, we need to provide the actual reverse domain mappings by
routing the last octet of each IP address to the FQDN of the associated
host using PTR records:

1 IN PTR ns1.example.com.
2 IN PTR ns2.example.com.
3 IN PTR www.example.com.

When you are finished, the file should look like this:

$ORIGIN 2.0.192.in-addr.arpa.
$TTL 1800
@ IN SOA ns1.example.com. admin.example.com. (
 2014070201 ; serial number
 3600 ; refresh
 900 ; retry
 1209600 ; expire
 1800 ; ttl
)
; Name servers
 IN NS ns1.example.com.
 IN NS ns2.example.com.

; PTR records
1 IN PTR ns1.example.com.
2 IN PTR ns2.example.com.
3 IN PTR www.example.com.
Save and close the file when you are finished.

Testing the Files and Restarting the Service
Now that we have our master server configured, we can go ahead and
test our configuration file and implement our changes.

You can check the syntax of the main configuration file by using the
included nsd-checkconftool. Simply point the tool to your main
configuration file:
sudo nsd-checkconf /etc/nsd/nsd.conf

If this returns immediately with no output, it means the syntax of your
main configuration file is valid. If you get an error, check the syntax of
your configuration file to fix any mistakes.

After you are able to execute the check cleanly, you can restart the
service by typing:

sudo service nsd restart

This will stop and start the NSD daemon.

Check the logs to see any messages:

sudo tail -f /var/log/nsd.log
You should see a number of errors that look like this:

. . .
[1404333729] nsd[2142]: error: xfrd: zone 2.0.192.in-addr.arpa:
received notify response error NAME ERROR from 192.0.2.2
[1404333729] nsd[2142]: error: xfrd: zone 2.0.192.in-addr.arpa: max
notify send count reached, 192.0.2.2 unreachable
This is here because NSD is attempting to transfer the zone to the slave
server, which has not been configured yet.

Configure the Slave NSD Server
Now that we have the master server set up, we can go ahead and get
the slave server ready as well.

Again, we want to make sure that our SSL certificates and keys are all
generated and available. To do this, issue the following command:

sudo nsd-control-setup
This will ensure that all of the credential files needed to control the
daemon are available to us.

Configure the nsd.conf File
The nsd.conf file for the slave server will be mostly the same as the
master server. There are only a few things that we will need to modify.
Begin by copying the master server's/etc/nsd/nsd.conf file into the slave
server's /etc/nsd/nsd.conf file.
This slave server's file should now look like this:

server:
 do-ip4: yes
 port: 53
 username: nsd
 zonesdir: "/etc/nsd"
 logfile: "/var/log/nsd.log"
 pidfile: "/run/nsd/nsd.pid"

remote-control:
 control-enable: yes
 control-interface: 127.0.0.1
 control-port: 8952
 server-key-file: "/etc/nsd/nsd_server.key"
 server-cert-file: "/etc/nsd/nsd_server.pem"
 control-key-file: "/etc/nsd/nsd_control.key"
 control-cert-file: "/etc/nsd/nsd_control.pem"

key:
 name: "demokey"
 algorithm: hmac-sha256
 secret: "+kO0Vu6gC+9bxzMy3TIZVLH+fg=="

pattern:
 name: "toslave"
 notify: 192.0.2.2 demokey
 provide-xfr: 192.0.2.2 demokey

zone:
 name: "example.com"
 zonefile: "example.com.zone"
 include-pattern: "toslave"

zone:
 name: "2.0.192.in-addr.arpa"
 zonefile: "192.0.2.zone"
 include-pattern: "toslave"
This is almost exactly what we need.

The server, remote-control, and key sections are already completely
configured. The "secret" in the key section must match the master
server's value, so copying the complete file contents makes it easy to
satisfy this requirement.
The first thing we will need to modify is the pattern section. The section
that we copied is specific to the master server, so we want to modify it to
address things from the slave server's perspective.
First, change the name to something more descriptive. We will use the
same convention and call this frommaster. We also need to change the
directives that this sets. Instead of thenotify parameter, slave servers
need an allow-notify parameter, which specifies the servers that are
allowed to notify it. We will still use the same key, so we just need to
modify the name and the appropriate IP address.
In a similar manner, we need to change the provide-xfr parameter
to request-xfr. The format of this changes slightly. We need to specify
that we are wanting a AXFR transfer (the only kind that NSD masters are
capable of) and we need to specify the IP address and the port number
of the master.
The pattern section will look something like this when you are finished:
pattern:
 name: "frommaster"
 allow-notify: 192.0.2.1 demokey
 request-xfr: AXFR 192.0.2.1@53 demokey

For the zone sections, the only thing we need to modify is the include-
pattern to match our the new pattern we just created:
zone:
 name: "example.com"
 zonefile: "example.com.zone"
 include-pattern: "frommaster"

zone:
 name: "2.0.192.in-addr.arpa"
 zonefile: "192.0.2.zone"
 include-pattern: "frommaster"
When you are finished, save and close the file.

Testing the Files and Restarting the Service
Since our slave server will receive all of its zone data through transfers
from the master, we do not actually need to configure the zone files on
this host.

Again, we should check the syntax of our main configuration file by
typing:

sudo nsd-checkconf /etc/nsd/nsd.conf
If you receive any errors, you need to take another look at
your nsd.conf file to address the syntax issues. If the command returns
without any output, it means that your syntax is valid in the file.
When your configuration file passes the test, you can restart the service
by typing:

sudo service nsd restart

Check the logs to make sure things are going okay:

sudo tail -f /var/log/nsd.log

Delegate Authority to your Name Servers
Now, your authoritative-only NSD servers should be configured and
ready to serve DNS information about your domain. We still need to
configure your domain so that it knows to use your name servers though.

To do this, you need to adjust some settings under the registrar where
you purchased your domain name. Some of the terminology and
certainly the interface will vary from registrar to registrar, but you should
be able to find the settings if you look carefully.

I will be demonstrating how to do this with Namecheap, a fairly standard
domain name registrar.

We need to adjust your name servers in a way that will allow us to
set glue records at the domain's parent. This is necessary whenever
the name servers are within the domain itself.

When you delegate a subdomain (like example.com from the com domain),
you must specify the name servers that are authoritative for the domain.
If the name servers are within the domain, you also must include a glue
record, which is simply an A record for each of the name server's that
are authoritative for the delegated zone.

https://www.namecheap.com/

We need this because DNS lookups would get caught in a loop if the
glue records were not included. Clients would ask our registrar who is
authoritative for the domain example.com and our registrar would (after
we configure this) return ns1.example.com and ns2.example.com. If we do
not include A records to resolve these to IP addresses, then the client
will never be able to move beyond this point. It would have no way of
finding the IP addresses of the name servers it needs because these are
typically defined in the name servers themselves.
The location in the registrar's interface where you can configure your
name servers and their associated IP addresses will vary depending on
your provider. With Namecheap, there is a section called "Nameserver
Registration" that allows you to set the IP addresses of name servers to
create glue records:

Here, you can set up the name servers and map them to a specific IP
address:

When you're done with this, you'll need to set the active name servers
that are being used for your domain. Namecheap has an option called
"Domain Name Server Setup" that accomplishes that:

In the interface that you get when selecting that option, you can enter the
host names of your name servers that you just registered:

The changes that you make with your registrar might take some time to
propagate. The data will also take additional time to spread to the rest of
the world's DNS servers. Typically, this process should complete in the
next 24-48 hours.

Conclusion

Using this guide, you should now have a master and slave authoritative-
only DNS servers that can be used to serve DNS information about your
domains. Unlike Bind, NSD is optimized for high performance
authoritative behavior, so you can get greater performance that is tuned
specifically your needs.

Parithy
Typewritten Text
Source : https://www.digitalocean.com/community/tutorials/how-to-use-nsd-an-authoritative-only-dns-server-on-ubuntu-14-04

	Using NSD, an Authoritative-Only DNS Server, on Ubuntu 14.04
	Introduction
	Prerequisites and Goals
	Setting the Hostname on the Name Servers
	Install NSD on Both Name Servers
	Configure the Master NSD Server
	Configure the nsd.conf File
	Create the Forward Zone File
	Create the Reverse Zone File
	Testing the Files and Restarting the Service

	Configure the Slave NSD Server
	Configure the nsd.conf File
	Testing the Files and Restarting the Service

	Delegate Authority to your Name Servers
	Conclusion

