Figure 4.20 shows the format of the TCP segment. The header consists of a 20-byte fixed part plus a variable-size options field.

Source port and destination port: The source and destination ports identify the sending and receiving applications, respectively. Recall from section 2.3.1 that the pair of ports and IP addresses identify a process-to-process connection.

The description of each field in the TCP segment is given below. The term sender refers to the host that sends the segment, and receiver refers to the host that receives the segment.
Sequence number: The 32-bit sequence number field identifies the position of the first data byte of this segment in the sender's byte stream during data transfer (when SYN bit is not set). The sequence number wraps back to 0 after 2^{32} 1. Note that TCP identifies the sequence number for each byte (rather than for each segment). For example, if the value of the sequence number is 100 and the data area contains five bytes, then the next time this TCP module sends a segment, the sequence number will be 105. If the SYN bit is set to 1 (during connection establishment), the sequence number indicates the initial sequence number (ISN) to be used in the sender's byte stream. The sequence number of the first byte of data for this byte stream will be ISN+1. It is important to note that a TCP connection is full duplex so that each end point independently maintains its own sequence number.

Acknowledgment number: This field identifies the sequence number of the next data byte that the sender expects to receive if the ACK bit is set. This field also indicates that the sender has successfully received all data up to but not including this value. If the ACK bit is not set (during connection establishment), this field is meaningless. Once a connection is established, the ACK bit must be set.

Header length: This field specifies the length of the TCP header in 32-bit words. This information allows the receiver to know the beginning of the data area because the options field is variable length.

Reserved: As the name implies, this field is reserved for future use and must be set to 0.

URG: If this bit is set, the urgent pointer is valid (discussed shortly).

ACK: If this bit is set, the acknowledgment number is valid.

PSH: When this bit is set, it tells the receiving TCP module to
pass the data to the application immediately. Otherwise, the receiving TCP module may choose to buffer the segment until enough data accumulates in its buffer.

RST: When this bit is set, it tells the receiving TCP module to abort the connection because of some abnormal condition.

SYN: This bit requests a connection (discussed later).

FIN: When this bit is set, it tells the receiver that the sender does not have any more data to send. The sender can still receive data from the other direction until it receives a segment with the FIN bit set.

Window size: The window size field specifies the number of bytes the sender is willing to accept. This field can be used to control the flow of data and congestion.

Checksum: This field detects errors on the TCP segment. The procedure is discussed below.

Urgent pointer: When the URG bit is set, the value in the urgent pointer field added to that in the sequence number field points to the last byte of the "urgent data" (data that needs immediate delivery). However, the first byte of the urgent data is never explicitly defined. Because the receiver's TCP module passes data to the application in sequence, any data in the receiver's buffer up to the last byte of the urgent data may be considered urgent.

Options: The options field may be used to provide other functions that are not covered by the header. If the length of the options field is not a multiple of 32 bits, extra padding bits will be added. The most important option is used by the sender to indicate the maximum segment size (MSS) it can accept. This option is specified during connection setup. Two other options that are negotiated during connection setup are intended to deal with situations that involve large delay-bandwidth products. The
window scale option allows the use of a larger advertised window size. The window can be scaled upward by a factor of up to 2^{14}. Normally the maximum window size is $2^{16} 1 \cdot 65,535$. With scaling the maximum advertised window size is $65,535 \cdot 2^{14}$ fl 1,073,725,440 bytes. The timestamp option is intended for high-speed connections where the sequence numbers may wrap around during the lifetime of the connection. The timestamp option allows the sender to include a timestamp in every segment. This timestamp can also be used in the RTT calculation.

TCP CHECKSUM

The purpose of the TCP checksum field is to detect errors. The checksum computation procedure is similar to that used to compute an IP checksum (discussed in Chapter 3) except for two features. First, if the length of the segment is not a multiple of 16 bits, the segment will be padded with zeros to make it a multiple of 16 bits. In doing so, the TCP length field is not modified. Second, a pseudoheader (shown in Figure 8.21) is added to the beginning of the segment when performing the checksum computation.

![Figure 4.21 TCP pseudoheader](http://elearningatria.files.wordpress.com/2013/10/cse-vi-computer-networks-ii-10cs64-notes.pdf)