Sum and product notation

For reference, this section introduces the terminology used in some texts to describe the minterms and maxterms assigned to a Karnaugh map. Otherwise, there is no new material here.

 Σ (sigma) indicates sum and lower case "m" indicates minterms. Σ m indicates sum of minterms. The following example is revisited to illustrate our point. Instead of a Boolean equation description of unsimplified logic, we list the minterms.

 $f(A,B,C,D) = \Sigma m(1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 15)$

or

 $f(A,B,C,D) = \Sigma(m_1,m_2,m_3,m_4,m_5,m_7,m_8,m_9,m_{11},m_{12},m_{13},m_{15})$

The numbers indicate cell location, or address, within a Karnaugh map as shown below right. This is certainly a compact means of describing a list of minterms or cells in a K-map.

10

 $f(A, B, C, D) = \sum m(0, 1, 3, 4, 5, 7, 12, 13, 15)$

	D 00	01	11	10	AB	AB 00 01 11 10						A_B 00 01			
00	0	1	3	2	00	1	1	1	0	00	6	(1)			
01	4	5	7	6	01	1	1	1	0	01		Å			
11	12	13	15	14	11	1	1	1	0	11	1	Y'			
10	8	9	11	10	10	0	0	0	0	10	0	0			

 $f(A, B, C, D) = \overline{AC} + \overline{AD} + \overline{BC} + BD$

The Sum-Of-Products solution is not affected by the new terminology. The minterms, **1**s, in the map have been grouped as usual and a Sum-OF-Products solution written.

Below, we show the terminology for describing a list of maxterms. Product is indicated by the Greek Π (pi), and upper case "M" indicates maxterms. Π M indicates product of maxterms. The same example illustrates our point. The Boolean equation description of unsimplified logic, is replaced by a list of maxterms.

 $f(A,B,C,D) = \Pi M(2, 6, 8, 9, 10, 11, 14)$

or

 $f(A,B,C,D) = \Pi(M_2, M_6, M_8, M_9, M_{10}, M_{11}, M_{14})$

Once again, the numbers indicate K-map cell address locations. For maxterms this is the location of $\mathbf{0}$ s, as shown below. A Product-OF-Sums solution is completed in the usual manner.

 $\begin{aligned} \text{Out} = \overline{(\overline{A} + \overline{B} + \overline{C} + \overline{D}) (\overline{A} + \overline{B} + \overline{C} + D) (\overline{A} + \overline{B} + \overline{C} + D) (\overline{A} + B + C + D)} \\ (\overline{A} + B + \overline{C} + \overline{D}) (\overline{A} + B + \overline{C} + \overline{D}) (\overline{A} + B + \overline{C} + D) \end{aligned}$

 $f(A,B,C,D) = \prod M(2,6,8,9,10,11,14)$

AB	D 00	01	11	10	AB	A _B CD 00 01 11 10								
00	0	1	3	2	00	1	1	1	0	00	1	1	1	0
01	4	5	7	6	01	1	1	1	0	01	1	1	1	0
11	12	13	15	14	11	1	1	1	0	11	1	1	1	0
10	8	9	11	10	10	0	0	0	0	10	0	0	0	0

 $f(A,B,C,D) = \overline{(A+B)} (\overline{C}+D)$

Source: http://www.allaboutcircuits.com/vol_4/chpt_8/9.html