SSL RECORD PROTOCOL
The SSL Record Protocol provides two services for SSL connections:
» Confidentiality: The Handshake Protocol defines a shared secret key that is used for
conventional encryption of SSL payloads.
* Message Integrity: The Handshake Protocol also defines a shared secret key that is
used to form a message authentication code (MAC).
Figure 1.3 indicates the overall operation of the SSL Record Protocol. The Record Protocol
takes an application message to be transmitted, fragments the data into manageable blocks,
optionally compresses the data, applies a MAC, encrypts, adds a header, and transmits the
resulting unit in a TCP segment. Received data are decrypted, verified, decompressed, and

reassembled and then delivered to higher-level users.

Application data

Fragment

Compress

Add MAC

Encrypt

Append SSL
record header

Figure 1.3. SSL Record Protocol Operation
The first step is fragmentation. Each upper-layer message is fragmented into blocks of 2'*
bytes (16384 bytes) or less. Next, compression is optionally applied. Compression must be
lossless and may not increase the content length by more than 1024 bytes.[2] In SSLv3 (as
well as the current version of TLS), no compression algorithm is specified, so the default
compression algorithm is null. The next step in processing is to compute a message
authentication code over the compressed data. For this purpose, a shared secret key is used.
The calculation is defined as
hash(MAC write secret || pad 2 ||
hash(MAC write secret || pad 1 || seq num ||

SSLCompressed.type ||

SSLCompressed.length || SSLCompressed.fragment))

Where

I = concatenation

MAC write_secret = shared secret key

hash = cryptographic hash algorithm; either MD5 or SHA-1

pad 1 = the byte 0x36 (0011 0110) repeated 48 times (384

bits) for MD5 and 40 times (320 bits) for SHA-1

pad 2 = the byte 0x5C (0101 1100) repeated 48 times for
MD)5 and 40 times for SHA-1

seq_num = the sequence number for this message

SSLCompressed.type = the higher-level protocol used to process this fragment

SSLCompressed.length = the length of the compressed fragment

SSLCompressed.fragment = the compressed fragment (if compression is not used,

the plaintext fragment)

The difference is that the two pads are concatenated in SSLv3 and are XORed in HMAC.
The SSLv3 MAC algorithm is based on the original Internet draft for HMAC, which used
concatenation. The final version of HMAC, defined in RFC 2104, uses the XOR.
Next, the compressed message plus the MAC are encrypted using symmetric encryption.
Encryption may not increase the content length by more than 1024 bytes, so that the total
length may not exceed 2'*+ 2048. The following encryption algorithms are permitted:
For block encryption, padding may be added after the MAC prior to encryption. The padding
is in the form of a number of padding bytes followed by a one-byte indication of the length of
the padding. The total amount of padding is the smallest amount such that the total size
of the data to be encrypted (plaintext plus MAC plus padding) is a multiple of the cipher's
block length. An example is a plaintext (or compressed text if compression is used) of 58
bytes, with a MAC of 20 bytes (using SHA-1), that is encrypted using a block length of 8
bytes (e.g., DES). With the padding.length byte, this yields a total of 79 bytes. To make the
total an integer multiple of 8, one byte of padding is added.
The final step of SSL Record Protocol processing is to prepend a header, consisting of the
following fields:

* Content Type (8 bits): The higher layer protocol used to process the enclosed

fragment.
* Major Version (8 bits): Indicates major version of SSL in use. For SSLv3, the value
is 3.
e Minor Version (8 bits): Indicates minor version in use. For SSLv3, the value is 0.
» Compressed Length (16 bits): The length in bytes of the plaintext fragment (or

compressed fragment if compression is used). The maximum value is 2'* + 2048.

Figure 1.4 illustrates the SSL record format.

| Content | Major | Minor | Compressed
type | version | version length

[BRRR AR R RR LR LR RRRRRRERIIEL
COCIIIIHK LIRS
100 00t 0 20 %0 0 %0 T 0 2000 20 %0 0 %0 %0 %0 e % !
O ICIHKIIIHK IR IR IIEIH I I A IR
SIIHIIHIIIKIIKICIIHIIIIIHIES
IR IAHA
10t 02000 %000 000 02000 %000 %670 20220 %000 20 %%
I IHIIHIAHH I IHIK
I IIHIAHIHKIAIH
COIIEIHIIHIIIIIIHN
HIIEHIHONAAA OO
OO ™ b DOOOOGOO
KK Plaintext KRS
OGO 0,0.0,9.0,0.0.9
SIIHINKK Ay RIS
OO (optionally GO
SOOI P ORI RIS
CKEHKINKE compressed) CRIIIIENNS
ORI compressed) ST
olole 0% %% S
SCLIIIICILICH KKK K 4 X KKK IKH K
00l 00 tel0 e l0 e 0l le e e e e e e e e lele
LK ICIEH I IHIIHIHINE
CIHIIHKIHIHHIHKAHIHRAI AR
SIS
LI HKAIHAAHIHI
SHICIHIIIIHIITIIIHIEHIHKA
SRIHIIIIIIIIIIIIIIIIIHRK
000000 02000 2000002000 2000202020 20002000 %0 %%

- -

pted

L

Encry

»MAC » ;»4 > #

; ; , oto e’
[L09.0.0.0.9.9.0.0.0.9.9, *****‘Iﬂt‘:‘

Figure 1.4. SSL Record Format

Source : http://elearningatria.files.wordpress.com/2013/10/ise-viii-information-and-network-
security-06is835-notes.pdf

Parithy
Typewritten Text
Source : http://elearningatria.files.wordpress.com/2013/10/ise-viii-information-and-network-security-06is835-notes.pdf

