

SSL RECORD PROTOCOL

The SSL Record Protocol provides two services for SSL connections:

• Confidentiality: The Handshake Protocol defines a shared secret key that is used for

conventional encryption of SSL payloads.

• Message Integrity: The Handshake Protocol also defines a shared secret key that is

used to form a message authentication code (MAC).

Figure 1.3 indicates the overall operation of the SSL Record Protocol. The Record Protocol

takes an application message to be transmitted, fragments the data into manageable blocks,

optionally compresses the data, applies a MAC, encrypts, adds a header, and transmits the

resulting unit in a TCP segment. Received data are decrypted, verified, decompressed, and

reassembled and then delivered to higher-level users.

Figure 1.3. SSL Record Protocol Operation

The first step is fragmentation. Each upper-layer message is fragmented into blocks of 214

bytes (16384 bytes) or less. Next, compression is optionally applied. Compression must be

lossless and may not increase the content length by more than 1024 bytes.[2] In SSLv3 (as

well as the current version of TLS), no compression algorithm is specified, so the default

compression algorithm is null. The next step in processing is to compute a message

authentication code over the compressed data. For this purpose, a shared secret key is used.

The calculation is defined as

hash(MAC_write_secret || pad_2 ||

hash(MAC_write_secret || pad_1 || seq_num ||

SSLCompressed.type ||

SSLCompressed.length || SSLCompressed.fragment))

Where

|| = concatenation

MAC_write_secret = shared secret key

hash = cryptographic hash algorithm; either MD5 or SHA-1

pad_1 = the byte 0x36 (0011 0110) repeated 48 times (384

 bits) for MD5 and 40 times (320 bits) for SHA-1

pad_2 = the byte 0x5C (0101 1100) repeated 48 times for

MD5 and 40 times for SHA-1

seq_num = the sequence number for this message

SSLCompressed.type = the higher-level protocol used to process this fragment

SSLCompressed.length = the length of the compressed fragment

SSLCompressed.fragment = the compressed fragment (if compression is not used,

the plaintext fragment)

The difference is that the two pads are concatenated in SSLv3 and are XORed in HMAC.

The SSLv3 MAC algorithm is based on the original Internet draft for HMAC, which used

concatenation. The final version of HMAC, defined in RFC 2104, uses the XOR.

Next, the compressed message plus the MAC are encrypted using symmetric encryption.

Encryption may not increase the content length by more than 1024 bytes, so that the total

length may not exceed 214 + 2048. The following encryption algorithms are permitted:

For block encryption, padding may be added after the MAC prior to encryption. The padding

is in the form of a number of padding bytes followed by a one-byte indication of the length of

the padding. The total amount of padding is the smallest amount such that the total size

of the data to be encrypted (plaintext plus MAC plus padding) is a multiple of the cipher's

block length. An example is a plaintext (or compressed text if compression is used) of 58

bytes, with a MAC of 20 bytes (using SHA-1), that is encrypted using a block length of 8

bytes (e.g., DES). With the padding.length byte, this yields a total of 79 bytes. To make the

total an integer multiple of 8, one byte of padding is added.

The final step of SSL Record Protocol processing is to prepend a header, consisting of the

following fields:

• Content Type (8 bits): The higher layer protocol used to process the enclosed

fragment.

• Major Version (8 bits): Indicates major version of SSL in use. For SSLv3, the value

is 3.

• Minor Version (8 bits): Indicates minor version in use. For SSLv3, the value is 0.

• Compressed Length (16 bits): The length in bytes of the plaintext fragment (or

compressed fragment if compression is used). The maximum value is 214 + 2048.

 Figure 1.4 illustrates the SSL record format.

Figure 1.4. SSL Record Format

Parithy
Typewritten Text
Source : http://elearningatria.files.wordpress.com/2013/10/ise-viii-information-and-network-security-06is835-notes.pdf

