
Screen scraping your way into RSS

Introduction

RSS is one the hottest technologies at the moment, and even big web publishers (such as the New York

Times) are getting into RSS as well. However, there are still a lot of websites that do not have RSS feeds.

If you still want to be able to check those websites in your favourite aggregator, you need to create your

own RSS feed for those websites. This can be done automatically with PHP, using a method called

screen scrapping. Screen scrapping is usually frowned upon, as it's mostly used to steal content from

other websites.

I personally believe that in this case, to automatically generate a RSS feed, screen scrapping is not a bad

thing. Now, on to the code!

Getting the content

For this article, we'll use PHPit as an example, despite the fact that PHPit already has RSS feeds.

We'll want to generate a RSS feed from the content listed on the frontpage. The first step in screen

scraping is getting the complete page. In PHP this can be done very easily, by using implode(file("", "[the

url here]")); IF your web host allows it. If you can't use file() you'll have to use a different method of getting

the page, e.g. using the CURL library.

Now that we have the content available, we can parse it for the content using some regular expressions.

The key to screen scraping is looking for patterns that match the content, e.g. are all the content items

wrapped in <div>'s or something else? If you can successfully discover a pattern, then you can use

preg_match_all() to get all the content items.

For PHPit, the pattern that match the content is [nohtml]<div class="contentitem">[Content

Here]<div>[/nohtml]. You can verify this yourself by going to the main page of PHPit, and viewing the

source.

Now that we have a match we can get all the content items. The next step is to retrieve the individual

information, i.e. url, title, author, text. This can be done by using some more regular expression and

str_replace() on the each content items.

By now we have the following code;

PHP Code:

<?php

// Get page

$url = "http://www.phpit.net/";

$data = implode("", file($url));

http://www.phpit.net/syndication/
http://www.phpit.net/
http://www.php.net/curl

// Get content items

preg_match_all ("/<div class=\"contentitem\">([^`]*?)<\/div>/", $data, $match

es);

Like I said, the next step is to retrieve the individual information, but first let's make a beginning on our
feed, by setting the appropriate header (text/xml) and printing the channel information, etc.

PHP Code:

// Begin feed

header ("Content-Type: text/xml; charset=ISO-8859-1");

echo "<?xml version=\"1.0\" encoding=\"ISO-8859-1\" ?>\n";

?>

<rss version="2.0"

 xmlns:dc="http://purl.org/dc/elements/1.1/"

 xmlns:content="http://purl.org/rss/1.0/modules/content/"

 xmlns:admin="http://webns.net/mvcb/"

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

 <channel>

 <title>PHPit Latest Content</title>

 <description>The latest content from PHPit (http://www.phpit.net), sc

reen scraped!</description>

 <link>http://www.phpit.net</link>

 <language>en-us</language>

<?

Now it's time to loop through the items, and print their RSS XML. We first loop through each item, and get
all the information we get, by using more regular expressions and preg_match(). After that the RSS for
the item is printed.

PHP Code:

<?php

// Loop through each content item

foreach ($matches[0] as $match) {

 // First, get title

 preg_match ("/\">([^`]*?)<\/a><\/h3>/", $match, $temp);

 $title = $temp['1'];

 $title = strip_tags($title);

 $title = trim($title);

 // Second, get url

 preg_match ("//", $match, $temp);

 $url = $temp['1'];

 $url = trim($url);

 // Third, get text

 preg_match ("/<p>([^`]*?)/", $match, $temp);

 $text = $temp['1'];

 $text = trim($text);

 // Fourth, and finally, get author

 preg_match ("/By ([^`]*?)<\/span>/", $match, $temp

);

 $author = $temp['1'];

 $author = trim($author);

 // Echo RSS XML

 echo "<item>\n";

 echo "\t\t\t<title>" . strip_tags($title) . "</title>\n";

 echo "\t\t\t<link>http://www.phpit.net" . strip_tags($url) . "</link>

\n";

 echo "\t\t\t<description>" . strip_tags($text) . "</description>\n";

 echo "\t\t\t<content:encoded><![CDATA[\n";

 echo $text . "\n";

 echo "]]></content:encoded>\n";

 echo "\t\t\t<dc:creator>" . strip_tags($author) . "</dc:creator>\n";

 echo "\t\t</item>\n";

}

?>

And finally, the RSS file is closed off.

PHP Code:

</channel>

</rss>

That's all. If you put all the code together, like in the demo script, then you'll have a perfect RSS feed.

Conclusion

In this tutorial I have shown you how to create a RSS feed from a website that does not have a RSS feed

themselves yet. Though the regular expression is different for each website, the principle is exactly the

same.

One thing I should mention is that you shouldn't immediately screen scrape a website's content. E-mail

them first about a RSS feed. Who knows, they might set one up themselves, and that would be even

better.

Source: http://www.go4expert.com/articles/screen-scraping-rss-t222/

