ROUTING TABLE POISONING ATTACKS AND DNS HACKING ATTACKS

DNS Hacking Attacks

The Domain Name System (DNS) server is a distributed hierarchical and global directory that translates domain names into numerical IP address. DNS is a critical infrastructure, and all hosts contact DNS to access servers and start connections. In the normal mode of operation, hosts send UDP queries to the DNS server. Servers reply with a proper answer, or direct the queries to smarter servers. A DNS server also stores information other than host addresses.

Name-resolution services in the modern Internet environment are essential for e-mail transmission, navigation to Web sites, or data transfer. Thus, an attack on DNS can potentially affect a large portion of the Internet. A DNS hacking attack may result in the lack of data authenticity and integrity and can appear in any of the following forms:

- 1. An information-level attack forces a server to correspond with other than the correct answer. With cache poisoning, a hacker tricks a remote name server into caching the answer for a third-party domain by providing malicious information for the domain's authorized servers. Hackers can then redirect traffic to a preselected site.
- 2. In a masquerading attack, the adversary poses as a trusted entity and obtains all the secret information. In this guise, the attacker can stop any message from being transmitted further or can change the content or redirect the

packet to bogus servers. This action is also known as a middle-man attack.

- 3. The attacker normally sends queries to each host and receives in reply the DNS host name. In an information leakage attack, the attacker sends queries to all hosts and identifies which IP addresses are not used. Later on, the intruder can use those IP addresses to make other types of attacks.
- 4. Once a domain name is selected, it has to be registered. Various tools are available to register domain names over the Internet. If the tools are not smart enough, an invader might obtain secure information and use it to highjack the domain later. In the domain high jacking attack, whenever a user enters a domain address, she/he is forced to enter into the attacker's Web site. This can be very irritating and can cause a great loss of Internet usage ability.

A routing table poisoning attack is the undesired modification of routing tables. An attacker can do this by maliciously modifying the routing information update packets sent by routers. This is a challenging and important problem, as a routing table is the basis of routing in the Internet. Any false entry in a routing table could lead to significant consequences, such as congestion, an overwhelmed host, looping, illegal access to data, and network partition. Two types of routing table poisoning attacks are the link attack and the router attack.

A link attack occurs when a hacker gets access to a link and thereby intercepts, interrupts, or modifies routing messages on packets. Link attacks act similarly on both the link-state and the distance-vector protocols. If an attacker succeeds in placing an attack in a link-state routing protocol, a router may send incorrect updates about its neighbors or remain silent even if the link state of its neighbor has changed. The attack through a link can be so severe that the attacker can program a router to either drop packets from a victim or readdress packets to a victim, resulting in a lower throughput of the network. Sometimes, a router can stop an intended packet from being forwarded further. However, since more than one path to any destination exists, the packet ultimately reaches its destination.

Router attacks may affect the link-state protocol or even the distance-vector protocol. If link-state protocol routers are attacked, they become malicious. They may add a nonexisting link to a routing table, delete an existing link, or even change the cost of a link. This attack may cause a router to simply ignore the updates sent by its neighbors, leading to a serious impact on the operability of the network traffic flow.

In the distance-vector protocol, an attacker may cause routers to send wrong updates about any node in the network, thereby misleading a router and resulting in network problems.

Most unprotected routers have no way to validate updates. Therefore, both link-state and distance-vector router attacks are very effective. In the distance-vector protocol, for example, a malicious router can send wrong information in the form of a distance vector to all its neighbors. A neighbor may not be able to detect this kind of attack and thus proceeds to update its routing table, based on wrong distance vectors. The error can in turn be propagated to a great portion of the network before being detected.

Source : http://elearningatria.files.wordpress.com/2013/10/cse-vi-computernetworks-ii-10cs64-notes.pdf