
Programmable logic controllers 

Before the advent of solid-state logic circuits, logical control systems were designed 

and built exclusively around electromechanical relays. Relays are far from obsolete 

in modern design, but have been replaced in many of their former roles as logic-

level control devices, relegated most often to those applications demanding high 

current and/or high voltage switching. 

Systems and processes requiring "on/off" control abound in modern commerce and 

industry, but such control systems are rarely built from either electromechanical 

relays or discrete logic gates. Instead, digital computers fill the need, which may 

be programmed to do a variety of logical functions. 

 

In the late 1960's an American company named Bedford Associates released a 

computing device they called the MODICON. As an acronym, it 

meant ModularDigital Controller, and later became the name of a company division 

devoted to the design, manufacture, and sale of these special-purpose control 

computers. Other engineering firms developed their own versions of this device, 

and it eventually came to be known in non-proprietary terms as a PLC, 

orProgrammable Logic Controller. The purpose of a PLC was to directly replace 

electromechanical relays as logic elements, substituting instead a solid-state digital 

computer with a stored program, able to emulate the interconnection of many 

relays to perform certain logical tasks. 

A PLC has many "input" terminals, through which it interprets "high" and "low" 

logical states from sensors and switches. It also has many output terminals, 

through which it outputs "high" and "low" signals to power lights, solenoids, 

contactors, small motors, and other devices lending themselves to on/off control. In 

an effort to make PLCs easy to program, their programming language was designed 

to resemble ladder logic diagrams. Thus, an industrial electrician or electrical 

engineer accustomed to reading ladder logic schematics would feel comfortable 

programming a PLC to perform the same control functions. 

PLCs are industrial computers, and as such their input and output signals are 

typically 120 volts AC, just like the electromechanical control relays they were 

designed to replace. Although some PLCs have the ability to input and output low-

level DC voltage signals of the magnitude used in logic gate circuits, this is the 

exception and not the rule. 



Signal connection and programming standards vary somewhat between different 

models of PLC, but they are similar enough to allow a "generic" introduction to PLC 

programming here. The following illustration shows a simple PLC, as it might 

appear from a front view. Two screw terminals provide connection to 120 volts AC 

for powering the PLC's internal circuitry, labeled L1 and L2. Six screw terminals on 

the left-hand side provide connection to input devices, each terminal representing a 

different input "channel" with its own "X" label. The lower-left screw terminal is a 

"Common" connection, which is generally connected to L2 (neutral) of the 120 VAC 

power source. 

 

Inside the PLC housing, connected between each input terminal and the Common 

terminal, is an opto-isolator device (Light-Emitting Diode) that provides an 

electrically isolated "high" logic signal to the computer's circuitry (a photo-transistor 

interprets the LED's light) when there is 120 VAC power applied between the 

respective input terminal and the Common terminal. An indicating LED on the front 

panel of the PLC gives visual indication of an "energized" input: 



 

Output signals are generated by the PLC's computer circuitry activating a switching 

device (transistor, TRIAC, or even an electromechanical relay), connecting the 

"Source" terminal to any of the "Y-" labeled output terminals. The "Source" 

terminal, correspondingly, is usually connected to the L1 side of the 120 VAC power 

source. As with each input, an indicating LED on the front panel of the PLC gives 

visual indication of an "energized" output: 



 

In this way, the PLC is able to interface with real-world devices such as switches 

and solenoids. 

The actual logic of the control system is established inside the PLC by means of a 

computer program. This program dictates which output gets energized under which 

input conditions. Although the program itself appears to be a ladder logic diagram, 

with switch and relay symbols, there are no actual switch contacts or relay coils 

operating inside the PLC to create the logical relationships between input and 

output. These are imaginary contacts and coils, if you will. The program is entered 

and viewed via a personal computer connected to the PLC's programming port. 

Consider the following circuit and PLC program: 



 

When the pushbutton switch is unactuated (unpressed), no power is sent to the X1 

input of the PLC. Following the program, which shows a normally-open X1 contact 

in series with a Y1 coil, no "power" will be sent to the Y1 coil. Thus, the PLC's Y1 

output remains de-energized, and the indicator lamp connected to it remains dark. 

If the pushbutton switch is pressed, however, power will be sent to the PLC's X1 

input. Any and all X1 contacts appearing in the program will assume the actuated 

(non-normal) state, as though they were relay contacts actuated by the energizing 

of a relay coil named "X1". In this case, energizing the X1 input will cause the 

normally-open X1 contact will "close," sending "power" to the Y1 coil. When the Y1 

coil of the program "energizes," the real Y1 output will become energized, lighting 

up the lamp connected to it: 



 

It must be understood that the X1 contact, Y1 coil, connecting wires, and "power" 

appearing in the personal computer's display are all virtual. They do not exist as 

real electrical components. They exist as commands in a computer program -- a 

piece of software only -- that just happens to resemble a real relay schematic 

diagram. 

Equally important to understand is that the personal computer used to display and 

edit the PLC's program is not necessary for the PLC's continued operation. Once a 

program has been loaded to the PLC from the personal computer, the personal 

computer may be unplugged from the PLC, and the PLC will continue to follow the 

programmed commands. I include the personal computer display in these 

illustrations for your sake only, in aiding to understand the relationship between 



real-life conditions (switch closure and lamp status) and the program's status 

("power" through virtual contacts and virtual coils). 

The true power and versatility of a PLC is revealed when we want to alter the 

behavior of a control system. Since the PLC is a programmable device, we can alter 

its behavior by changing the commands we give it, without having to reconfigure 

the electrical components connected to it. For example, suppose we wanted to 

make this switch-and-lamp circuit function in an inverted fashion: push the button 

to make the lamp turn off, and release it to make it turn on. The "hardware" 

solution would require that a normally-closed pushbutton switch be substituted for 

the normally-open switch currently in place. The "software" solution is much easier: 

just alter the program so that contact X1 is normally-closed rather than normally-

open. 

 

In the following illustration, we have the altered system shown in the state where 

the pushbutton is unactuated (not being pressed): 

 

In this next illustration, the switch is shown actuated (pressed): 



 

One of the advantages of implementing logical control in software rather than in 

hardware is that input signals can be re-used as many times in the program as is 

necessary. For example, take the following circuit and program, designed to 

energize the lamp if at least two of the three pushbutton switches are 

simultaneously actuated: 



 

To build an equivalent circuit using electromechanical relays, three relays with two 

normally-open contacts each would have to be used, to provide two contacts per 

input switch. Using a PLC, however, we can program as many contacts as we wish 

for each "X" input without adding additional hardware, since each input and each 

output is nothing more than a single bit in the PLC's digital memory (either 0 or 1), 

and can be recalled as many times as necessary. 

Furthermore, since each output in the PLC is nothing more than a bit in its memory 

as well, we can assign contacts in a PLC program "actuated" by an output (Y) 

status. Take for instance this next system, a motor start-stop control circuit: 



 

The pushbutton switch connected to input X1 serves as the "Start" switch, while the 

switch connected to input X2 serves as the "Stop." Another contact in the program, 

named Y1, uses the output coil status as a seal-in contact, directly, so that the 

motor contactor will continue to be energized after the "Start" pushbutton switch is 

released. You can see the normally-closed contact X2 appear in a colored block, 

showing that it is in a closed ("electrically conducting") state. 

If we were to press the "Start" button, input X1 would energize, thus "closing" the 

X1 contact in the program, sending "power" to the Y1 "coil," energizing the Y1 

output and applying 120 volt AC power to the real motor contactor coil. The parallel 

Y1 contact will also "close," thus latching the "circuit" in an energized state: 



 

Now, if we release the "Start" pushbutton, the normally-open X1 "contact" will 

return to its "open" state, but the motor will continue to run because the Y1 seal-in 

"contact" continues to provide "continuity" to "power" coil Y1, thus keeping the Y1 

output energized: 



 

To stop the motor, we must momentarily press the "Stop" pushbutton, which will 

energize the X2 input and "open" the normally-closed "contact," breaking continuity 

to the Y1 "coil:" 



 

When the "Stop" pushbutton is released, input X2 will de-energize, returning 

"contact" X2 to its normal, "closed" state. The motor, however, will not start again 

until the "Start" pushbutton is actuated, because the "seal-in" of Y1 has been lost: 



 

An important point to make here is that fail-safe design is just as important in PLC-

controlled systems as it is in electromechanical relay-controlled systems. One 

should always consider the effects of failed (open) wiring on the device or devices 

being controlled. In this motor control circuit example, we have a problem: if the 

input wiring for X2 (the "Stop" switch) were to fail open, there would be no way to 

stop the motor! 

The solution to this problem is a reversal of logic between the X2 "contact" inside 

the PLC program and the actual "Stop" pushbutton switch: 



 

When the normally-closed "Stop" pushbutton switch is unactuated (not pressed), 

the PLC's X2 input will be energized, thus "closing" the X2 "contact" inside the 

program. This allows the motor to be started when input X1 is energized, and 

allows it to continue to run when the "Start" pushbutton is no longer pressed. When 

the "Stop" pushbutton is actuated, input X2 will de-energize, thus "opening" the X2 

"contact" inside the PLC program and shutting off the motor. So, we see there is no 

operational difference between this new design and the previous design. 

However, if the input wiring on input X2 were to fail open, X2 input would de-

energize in the same manner as when the "Stop" pushbutton is pressed. The result, 

then, for a wiring failure on the X2 input is that the motor will immediately shut off. 



This is a safer design than the one previously shown, where a "Stop" switch wiring 

failure would have resulted in an inability to turn off the motor. 

In addition to input (X) and output (Y) program elements, PLCs provide "internal" 

coils and contacts with no intrinsic connection to the outside world. These are used 

much the same as "control relays" (CR1, CR2, etc.) are used in standard relay 

circuits: to provide logic signal inversion when necessary. 

To demonstrate how one of these "internal" relays might be used, consider the 

following example circuit and program, designed to emulate the function of a three-

input NAND gate. Since PLC program elements are typically designed by single 

letters, I will call the internal control relay "C1" rather than "CR1" as would be 

customary in a relay control circuit: 



 

In this circuit, the lamp will remain lit so long as any of the pushbuttons remain 

unactuated (unpressed). To make the lamp turn off, we will have to actuate 

(press) all three switches, like this: 



 

This section on programmable logic controllers illustrates just a small sample of 

their capabilities. As computers, PLCs can perform timing functions (for the 

equivalent of time-delay relays), drum sequencing, and other advanced functions 

with far greater accuracy and reliability than what is possible using 

electromechanical logic devices. Most PLCs have the capacity for far more than six 

inputs and six outputs. The following photograph shows several input and output 

modules of a single Allen-Bradley PLC. 



 

With each module having sixteen "points" of either input or output, this PLC has the 

ability to monitor and control dozens of devices. Fit into a control cabinet, a PLC 

takes up little room, especially considering the equivalent space that would be 

needed by electromechanical relays to perform the same functions: 



 

One advantage of PLCs that simply cannot be duplicated by electromechanical 

relays is remote monitoring and control via digital computer networks. Because a 

PLC is nothing more than a special-purpose digital computer, it has the ability to 

communicate with other computers rather easily. The following photograph shows a 

personal computer displaying a graphic image of a real liquid-level process (a 

pumping, or "lift," station for a municipal wastewater treatment system) controlled 

by a PLC. The actual pumping station is located miles away from the personal 

computer display: 



 

 

 

 

 

Source: http://www.allaboutcircuits.com/vol_4/chpt_6/6.html 


