
Minterm vs maxterm solution 

So far we have been finding Sum-Of-Product (SOP) solutions to logic reduction 

problems. For each of these SOP solutions, there is also a Product-Of-Sums solution 

(POS), which could be more useful, depending on the application. Before working a 

Product-Of-Sums solution, we need to introduce some new terminology. The 

procedure below for mapping product terms is not new to this chapter. We just 

want to establish a formal procedure for minterms for comparison to the new 

procedure for maxterms. 

 

A minterm is a Boolean expression resulting in 1 for the output of a single cell, 

and 0s for all other cells in a Karnaugh map, or truth table. If a minterm has a 

single 1 and the remaining cells as 0s, it would appear to cover a minimum area 

of 1s. The illustration above left shows the minterm ABC, a single product term, as 

a single 1 in a map that is otherwise 0s. We have not shown the 0s in our 

Karnaugh maps up to this point, as it is customary to omit them unless specifically 

needed. Another minterm A'BC' is shown above right. The point to review is that 

the address of the cell corresponds directly to the minterm being mapped. That is, 

the cell 111 corresponds to the minterm ABC above left. Above right we see that 

the minterm A'BC' corresponds directly to the cell010. A Boolean expression or 

map may have multiple minterms. 

Referring to the above figure, Let's summarize the procedure for placing a minterm 

in a K-map: 

 Identify the minterm (product term) term to be mapped. 

 Write the corresponding binary numeric value. 



 Use binary value as an address to place a 1 in the K-map 

 Repeat steps for other minterms (P-terms within a Sum-Of-Products). 
 

 
 

 

A Boolean expression will more often than not consist of multiple minterms 

corresponding to multiple cells in a Karnaugh map as shown above. The multiple 

minterms in this map are the individual minterms which we examined in the 

previous figure above. The point we review for reference is that the 1s come out of 

the K-map as a binary cell address which converts directly to one or more product 

terms. By directly we mean that a 0 corresponds to a complemented variable, and 

a 1 corresponds to a true variable. Example: 010 converts directly to A'BC'. There 

was no reduction in this example. Though, we do have a Sum-Of-Products result 

from the minterms. 

Referring to the above figure, Let's summarize the procedure for writing the Sum-

Of-Products reduced Boolean equation from a K-map: 

 Form largest groups of 1s possible covering all minterms. Groups must be a 

power of 2. 

 Write binary numeric value for groups. 

 Convert binary value to a product term. 

 Repeat steps for other groups. Each group yields a p-terms within a Sum-

Of-Products. 

Nothing new so far, a formal procedure has been written down for dealing with 

minterms. This serves as a pattern for dealing with maxterms. 



Next we attack the Boolean function which is 0 for a single cell and 1s for all 

others. 
 

 
 

 

 
 
 

A maxterm is a Boolean expression resulting in a 0 for the output of a single cell 

expression, and 1s for all other cells in the Karnaugh map, or truth table. The 

illustration above left shows the maxterm (A+B+C), a single sum term, as a 

single 0 in a map that is otherwise 1s. If a maxterm has a single 0 and the 

remaining cells as 1s, it would appear to cover a maximum area of 1s. 

There are some differences now that we are dealing with something new, 

maxterms. The maxterm is a 0, not a 1 in the Karnaugh map. A maxterm is a sum 

term, (A+B+C) in our example, not a product term. 

It also looks strange that (A+B+C) is mapped into the cell 000. For the 

equation Out=(A+B+C)=0, all three variables (A, B, C) must individually be 

equal to 0. Only (0+0+0)=0 will equal 0. Thus we place our sole 0 for 

minterm (A+B+C) in cell A,B,C=000 in the K-map, where the inputs are all0 . 

This is the only case which will give us a 0 for our maxterm. All other cells 

contain 1s because any input values other than ((0,0,0) for (A+B+C) yields 1s 

upon evaluation. 

Referring to the above figure, the procedure for placing a maxterm in the K-map is: 

 Identify the Sum term to be mapped. 

 Write corresponding binary numeric value. 

 Form the complement 

 Use the complement as an address to place a 0 in the K-map 



 Repeat for other maxterms (Sum terms within Product-of-Sums 

expression). 
 

 
 

 

 
 
 

Another maxterm A'+B'+C' is shown above. Numeric 000 corresponds 

to A'+B'+C'. The complement is 111. Place a 0 for maxterm (A'+B'+C') in this 

cell(1,1,1) of the K-map as shown above. 

Why should (A'+B'+C') cause a 0 to be in cell 111? 

When A'+B'+C' is (1'+1'+1'), all 1s in, which is (0+0+0) after taking 

complements, we have the only condition that will give us a 0. All the 1s are 

complemented to all 0s, which is 0 when ORed. 
 
 
 

 



 
 
 

A Boolean Product-Of-Sums expression or map may have multiple maxterms as 

shown above. Maxterm (A+B+C) yields numeric 111 which complements to000, 

placing a 0 in cell (0,0,0). Maxterm (A+B+C') yields numeric 110 which 

complements to 001, placing a 0 in cell (0,0,1). 

 

Now that we have the k-map setup, what we are really interested in is showing how 

to write a Product-Of-Sums reduction. Form the 0s into groups. That would be a 

group of two below. Write the binary value corresponding to the sum-term which 

is (0,0,X). Both A and B are 0 for the group. But, C is both 0and 1 so we write 

an X as a place holder for C. Form the complement (1,1,X). Write the Sum-

term (A+B) discarding the C and the X which held its' place. In general, expect to 

have more sum-terms multiplied together in the Product-Of-Sums result. Though, 

we have a simple example here. 

 

Let's summarize the procedure for writing the Product-Of-Sums Boolean reduction 

for a K-map: 

 Form largest groups of 0s possible, covering all maxterms. Groups must be 

a power of 2. 

 Write binary numeric value for group. 

 Complement binary numeric value for group. 

 Convert complement value to a sum-term. 

 Repeat steps for other groups. Each group yields a sum-term within a 

Product-Of-Sums result. 



 
 
 

Example: 
 
Simplify the Product-Of-Sums Boolean expression below, providing a result in POS 

form. 
 

 
 

 

Solution: 
 

 
 

Transfer the seven maxterms to the map below as 0s. Be sure to complement the 

input variables in finding the proper cell location. 
 

 
 

 

 
 
 

We map the 0s as they appear left to right top to bottom on the map above. We 

locate the last three maxterms with leader lines.. 



Once the cells are in place above, form groups of cells as shown below. Larger 

groups will give a sum-term with fewer inputs. Fewer groups will yield fewer sum-

terms in the result. 

 

 
 

 

 
 
 

We have three groups, so we expect to have three sum-terms in our POS result 

above. The group of 4-cells yields a 2-variable sum-term. The two groups of 2-cells 

give us two 3-variable sum-terms. Details are shown for how we arrived at the 

Sum-terms above. For a group, write the binary group input address, then 

complement it, converting that to the Boolean sum-term. The final result is product 

of the three sums. 

Example: 
 
 
 

Simplify the Product-Of-Sums Boolean expression below, providing a result in SOP 

form. 

 
 

 



 
 
 

Solution: 
 
This looks like a repeat of the last problem. It is except that we ask for a Sum-Of-

Products Solution instead of the Product-Of-Sums which we just finished. Map the 
maxterm 0s from the Product-Of-Sums given as in the previous problem, below 

left. 
 
 
 

 

Then fill in the implied 1s in the remaining cells of the map above right. 
 

 
 

 



 
 
 

Form groups of 1s to cover all 1s. Then write the Sum-Of-Products simplified result 

as in the previous section of this chapter. This is identical to a previous problem. 
 
 
 

 

 

 
 

Above we show both the Product-Of-Sums solution, from the previous example, and 

the Sum-Of-Products solution from the current problem for comparison. Which is 

the simpler solution? The POS uses 3-OR gates and 1-AND gate, while the SOP uses 

3-AND gates and 1-OR gate. Both use four gates each. Taking a closer look, we 

count the number of gate inputs. The POS uses 8-inputs; the SOP uses 7-inputs. By 

the definition of minimal cost solution, the SOP solution is simpler. This is an 

example of a technically correct answer that is of little use in the real world. 

The better solution depends on complexity and the logic family being used. The SOP 

solution is usually better if using the TTL logic family, as NAND gates are the basic 

building block, which works well with SOP implementations. On the other hand, A 

POS solution would be acceptable when using the CMOS logic family since all sizes 

of NOR gates are available. 



 
 
 

 

 
 
 

The gate diagrams for both cases are shown above, Product-Of-Sums left, and 

Sum-Of-Products right. 

Below, we take a closer look at the Sum-Of-Products version of our example logic, 

which is repeated at left. 

 

 
 

 

 
 
 



Above all AND gates at left have been replaced by NAND gates at right.. The OR 

gate at the output is replaced by a NAND gate. To prove that AND-OR logic is 

equivalent to NAND-NAND logic, move the inverter invert bubbles at the output of 

the 3-NAND gates to the input of the final NAND as shown in going from above 

right to below left. 

 

 
 

 

 
 
 

Above right we see that the output NAND gate with inverted inputs is logically 

equivalent to an OR gate by DeMorgan's theorem and double negation. This 

information is useful in building digital logic in a laboratory setting where TTL logic 

family NAND gates are more readily available in a wide variety of configurations 

than other types. 

The Procedure for constructing NAND-NAND logic, in place of AND-OR logic is as 

follows: 

 Produce a reduced Sum-Of-Products logic design. 

 When drawing the wiring diagram of the SOP, replace all gates (both AND 

and OR) with NAND gates. 

 Unused inputs should be tied to logic High. 

 In case of troubleshooting, internal nodes at the first level of NAND gate 

outputs do NOT match AND-OR diagram logic levels, but are inverted. Use 



the NAND-NAND logic diagram. Inputs and final output are identical, 

though. 

 Label any multiple packages U1, U2,.. etc. 

 Use data sheet to assign pin numbers to inputs and outputs of all gates. 
 

 
 

Example: 
 

 
 

Let us revisit a previous problem involving an SOP minimization. Produce a Product-

Of-Sums solution. Compare the POS solution to the previous SOP. 

 

 
 

 

 

 
 

Solution: 
 
 
 



Above left we have the original problem starting with a 9-minterm Boolean 

unsimplified expression. Reviewing, we formed four groups of 4-cells to yield a 4-

product-term SOP result, lower left. 

In the middle figure, above, we fill in the empty spaces with the implied 0s. The 0s 

form two groups of 4-cells. The solid blue group is (A'+B), the dashed red group 

is (C'+D). This yields two sum-terms in the Product-Of-Sums result, above 

right Out = (A'+B)(C'+D) 

Comparing the previous SOP simplification, left, to the POS simplification, right, 

shows that the POS is the least cost solution. The SOP uses 5-gates total, the POS 

uses only 3-gates. This POS solution even looks attractive when using TTL logic due 

to simplicity of the result. We can find AND gates and an OR gate with 2-inputs. 

 
 
 

 

 

 
 

The SOP and POS gate diagrams are shown above for our comparison problem. 

Given the pin-outs for the TTL logic family integrated circuit gates below, label the 

maxterm diagram above right with Circuit designators (U1-a, U1-b, U2-a, etc), and 

pin numbers. 



 

 
 
 

Each integrated circuit package that we use will receive a circuit designator: U1, 

U2, U3. To distinguish between the individual gates within the package, they are 

identified as a, b, c, d, etc. The 7404 hex-inverter package is U1. The individual 

inverters in it are are U1-a, U1-b, U1-c, etc. U2 is assigned to the 7432 quad OR 

gate. U3 is assigned to the 7408 quad AND gate. With reference to the pin numbers 

on the package diagram above, we assign pin numbers to all gate inputs and 

outputs on the schematic diagram below. 

We can now build this circuit in a laboratory setting. Or, we could design a printed 

circuit board for it. A printed circuit board contains copper foil "wiring" backed by a 

non conductive substrate of phenolic, or epoxy-fiberglass. Printed circuit boards are 

used to mass produce electronic circuits. Ground the inputs of unused gates. 
 

 
 



 

 

 
 

Label the previous POS solution diagram above left (third figure back) with Circuit 

designators and pin numbers. This will be similar to what we just did. 

 

 

 
 

We can find 2-input AND gates, 7408 in the previous example. However, we have 

trouble finding a 4-input OR gate in our TTL catalog. The only kind of gate with 4-

inputs is the 7420 NAND gate shown above right. 

We can make the 4-input NAND gate into a 4-input OR gate by inverting the inputs 

to the NAND gate as shown below. So we will use the 7420 4-input NAND gate as 

an OR gate by inverting the inputs. 



 
 
 

 

 
 
 

We will not use discrete inverters to invert the inputs to the 7420 4-input NAND 

gate, but will drive it with 2-input NAND gates in place of the AND gates called for 

in the SOP, minterm, solution. The inversion at the output of the 2-input NAND 

gates supply the inversion for the 4-input OR gate. 

 
 
 

 



 
 
 

The result is shown above. It is the only practical way to actually build it with TTL 

gates by using NAND-NAND logic replacing AND-OR logic. 

 

 

Source: http://www.allaboutcircuits.com/vol_4/chpt_8/8.html 


