
INTRODUCTION TO MESSAGE

ROUTING

We discussed how a Message Router can be used to decouple a message source

from the ultimate destination of the message. This chapter elaborates on specific

types of Message Routers to explain how to provide routing and brokering ability

to an integration solution. Most patterns are refinements of the Message

Router pattern while others combine multiple Message Routers to solve more

complex problems. Therefore, we can categorize the Message Routing patterns

into the following groups:

 Simple Routers are variants of the Message Router and route messages

from one inbound channel to one or more outbound channels.

 Composed Routers combine multiple simple routers to create more

complex message flows.

 Architectural Patterns describe architectural styles based on Message

Routers.

Simple Routers

The Content-Based Router inspects the content of a message and routes it to

another channel based on the content of the message.

http://www.enterpriseintegrationpatterns.com/patterns/messaging/MessageRouter.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/MessageRouter.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/MessageRouter.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/MessageRouter.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/MessageRouter.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/MessageRouter.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/MessageRouter.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/MessageRouter.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/ContentBasedRouter.html

Using such a router enables the message producer to send messages to a single

channel and leave it to the Content-Based Router to inspect messages and route

them to the proper destination. This alleviates the sending application from this

task and avoids coupling the message producer to specific destination channels.

A Message Filter is a special form of a Content-Based Router. It examines the

message content and passes the message to another channel if the message content

matches certain criteria. Otherwise, it discards the message. Message Filters can be

used with Publish-Subscribe Channel to route a message to all possible recipients

and allow the recipients to filter out irrelevant messages. A Message

Filter performs a function that is very similar to that of a Selective Consumer with

the key difference being that a Message Filter is part of the messaging system,

routing qualifying messages to another channel, whereas a Selective Consumer is

built into a Message Endpoint.

A Content-Based Router and a Message Filter can actually solve a similar

problem. A Content-Based Router routes a message to the correct destination

based on the criteria encoded in the Content-Based Router. Equivalent behavior

can be achieved by using a Publish-Subscribe Channel and an array of Message

Filters, one for each potential recipient. Each Message Filter eliminates the

messages that to not match the criteria for the specific destination.

http://www.enterpriseintegrationpatterns.com/patterns/messaging/ContentBasedRouter.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/Filter.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/ContentBasedRouter.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/Filter.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/PublishSubscribeChannel.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/Filter.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/Filter.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/MessageSelector.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/Filter.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/MessageSelector.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/MessageEndpoint.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/ContentBasedRouter.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/Filter.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/ContentBasedRouter.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/ContentBasedRouter.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/PublishSubscribeChannel.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/Filter.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/Filter.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/Filter.html

The Content-Based Router routes predictively to a single channel and therefore has

total control, but is also dependent on the list of all possible destination channels.

The Message Filter array filters reactively, spreading the routing logic across

many Message Filters but avoiding a single component that is dependent on all

possible destinations. The trade-off between these solutions is described in more

detail in the Message Filter pattern.

A basic Message Router uses fixed rules to determine the destination of an

incoming message. Where we need more flexibility, a Dynamic Router can be very

useful. This router allows the routing logic to be modified by sending control

messages to a designated control port. The dynamic nature of the Dynamic

Router can be combined with most forms of the Message Router.

Chapter 3 introduced the concept of a Point-to-Point Channel and a Publish-

Subscribe Channel. Sometimes, you need to send a message to more than one

recipient, but want to maintain control over the recipients. The Recipient

List allows you do just that. In essence, a Recipient List is a Content-Based

Router that can route a single message to more than one destination channel.

Some messages contain lists of individual items. How do you process these items

individually? Use a Splitter to split the large message into individual messages.

Each message can then be routed further and processed individually.

http://www.enterpriseintegrationpatterns.com/patterns/messaging/ContentBasedRouter.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/Filter.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/Filter.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/Filter.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/MessageRouter.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/DynamicRouter.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/DynamicRouter.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/DynamicRouter.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/MessageRouter.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/PointToPointChannel.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/PublishSubscribeChannel.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/PublishSubscribeChannel.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/RecipientList.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/RecipientList.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/RecipientList.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/ContentBasedRouter.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/ContentBasedRouter.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/Sequencer.html

However, you may need to recombine the messages that the Splitter created back

into a single message. This is one of the functions an Aggregator performs.

An Aggregator can receive a stream of messages, identify related messages and

combine them into a single message. Unlike the other routing patterns,

the Aggregator is a stateful Message Router because it has to store messages

internally until specific conditions are fulfilled. This mean that an Aggregator can

consume a number of messages before it publishes a message.

Because we use messaging to connect applications or components running on

multiple computers, multiple messages can be processed in parallel. For example,

more than one process may consume messages off a single channel. One of these

processes may execute faster than another, causing messages to be processed out of

order. However, some components depend on the correct sequence of individual

messages, for example ledger-based systems. The Resequencer puts out-of-

sequence messages back into sequence. The Resequencer is also a stateful Message

Router because it may need to store a number of messages internally until the

message arrives that completes the sequence. Unlike the Aggregator, though,

the Resequencer ultimately publishes the same number of messages it consumed.

http://www.enterpriseintegrationpatterns.com/patterns/messaging/Sequencer.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/Aggregator.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/Aggregator.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/Aggregator.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/MessageRouter.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/Aggregator.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/Resequencer.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/Resequencer.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/MessageRouter.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/MessageRouter.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/Aggregator.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/Resequencer.html

The following table summarizes the properties of the Message Router variants (we

did not include the Dynamic Router as a separate alternative because any router

can be implemented as a dynamic variant):

Pattern
Number of Msgs

Consumed

Number of Msgs

Published
Stateful? Comment

Content-Based

Router

1 1
No

(mostly)

Message Filter 1 0 or 1
No

(mostly)

Recipient List 1 multiple (incl. 0) No

Splitter 1 multiple No

Aggregator multiple 1 Yes

Resequencer multiple multiple Yes
Publishes same number

it consumes.

Composed Routers

A key advantage of the Pipes and Filters architecture is the fact that we can

compose multiple filters into a larger solution. Composed Message Processor or

an Scatter-Gather combine multiple Message Router variants to create more

comprehensive solutions. Both patterns allow us to retrieve information from

multiple sources and recombine it into a single message.

http://www.enterpriseintegrationpatterns.com/patterns/messaging/MessageRouter.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/DynamicRouter.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/ContentBasedRouter.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/ContentBasedRouter.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/Filter.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/RecipientList.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/Sequencer.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/Aggregator.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/Resequencer.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/PipesAndFilters.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/DistributionAggregate.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/BroadcastAggregate.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/MessageRouter.html

While the Composed Message Processor maintains control over the possible

sources the Scatter-Gather uses a Publish-Subscribe Channel so that any interested

component can participate in the process.

Both the Composed Message Processor and the Scatter-Gather route a single

message to a number of participants concurrently and reassemble the replies into a

single message. We can say that these patterns manage the parallel routing of a

message. Two more patterns manage the sequential routing of a message, i.e.

routing a message through a sequence of individual steps. If we want to control the

path of a message from a central point we can use a Routing Slip to specify the

path the message should take. This pattern works just like the routing slip attached

to office documents to pass them sequentially by a number of recipients.

Alternatively, we can use a Process Manager which gives us more flexibility but

requires the message to return to a central component after each function.

Architectural Patterns

Message Routers enable us to architect an integration solution using a

central Message Broker. As opposed to the different message routing design

patterns, this pattern describes a hub-and-spoke architectural style.

http://www.enterpriseintegrationpatterns.com/patterns/messaging/DistributionAggregate.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/BroadcastAggregate.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/PublishSubscribeChannel.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/DistributionAggregate.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/BroadcastAggregate.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/RoutingTable.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/ProcessManager.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/MessageRouter.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/MessageBroker.html

The Right Router for the Right Purpose

This chapter contains 10 patterns. How can we make it easy to find the right

pattern for the right purpose? The following decision chart helps you find the right

pattern for the right purpose by matter of simple yes/no decisions. For example, if

you are looking for a simple routing pattern that consumes one message at a time

but publishes multiple messages in sequential order, you should use a Splitter. The

diagram also helps illustrate how closely the individual patterns are related. For

example, a Routing Slip and a Process Manager solve similar problems while

a Message Filter does something rather different.

Source:

http://www.enterpriseintegrationpatterns.com/patterns/messaging/MessageRoutingIntro.html

http://www.enterpriseintegrationpatterns.com/patterns/messaging/Sequencer.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/RoutingTable.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/ProcessManager.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/Filter.html

