
FTP protocol (File Transfer Protocol) 

Introduction to FTP protocol 

FTP protocol (File Transfer Protocol) is, as its name indicates a protocol for transferring 

files. 

 

The implementation of FTP dates from 1971 when a file transfer system (described 

in RFC141) between MIT machines (Massachusetts Institute of Technology) was 

developed. Many RFC have since made improvements to the basic protocol, but the 

greatest innovations date from July 1973. 

 

The FTP protocol is currently defined by RFC 959 (File Transfer Protocol (FTP) - 

Specifications). 

The role of FTP protocol 

FTP protocol defines the way in which data must be transferred over a TCP/IPnetwork. 

The aim of FTP protocol is to: 

 allow file sharing between remote machines 

 allow independence between client and server machine system files 

 enable efficient data transfer 

The FTP model 

FTP protocol falls within a client-server model, i.e. one machine sends orders (the 

client) and the other awaits requests to carry out actions (the server). 

During an FTP connection, two transmission channels are open: 

 A channel for commands (control channel) 

 A channel for data 

http://en.kioskea.net/contents/protocol.php3
http://en.kioskea.net/contents/rfc.php3
http://en.kioskea.net/contents/rfc.php3
http://en.kioskea.net/contents/tcpip.php3


 

So, both the client and server have two processes allowing these two types of 

information to be managed: 

 DTP (Data Transfer Process) is the process in charge of establishing the connection 

and managing the data channel. The server side DTP is calledSERVER-DTP, the client 

side DTP is called USER-DTP 

 PI (Protocol Interpreter) interprets the protocol allowing the DTP to be controlled 

using commands received over the control channel. It is different on the client and 

the server: 

 The SERVER-PI is responsible for listening to the commands coming from a 

USER-PI over the control channel on a data port, establishing the connection for 

the control channel, receiving FTP commands from the USER-PI over this, 

responding to them and running the SERVER-DTP. 

 The USER-PI is responsible for establishing the connection with the FTP server, 

sending FTP commands, receiving responses from the SERVER-PI and controlling 

the USER-DTP if needed. 

When an FTP client is connected to a FTP server, the USER-PI initiates the connection to 

the server according to the Telnet protocol. The client sends FTP commands to the 

server, the server interprets them, runs its DTP, then sends a standard response. Once 

the connection is established, the server-PI gives the port on which data will be sent to 

the Client DTP. The client DTP then listens on the specified port for data coming from 

the server.  

It is important to note that since the control and data ports are separate channels, it is 

possible to send commands from one machine and receive data on another. So, for 

example it is possible to transfer data between FTP servers by passing through a client 

to send control instructions and by transferring information between two server 

processes connected on the right port. 

http://en.kioskea.net/contents/port.php3


 

In this configuration, the protocol imposes that the control channels remain open 

throughout the data transfer. So a server can stop a transmission if the control channel 

is broken during transmission. 

The FTP commands 

All communication conducted on the control channel follows Telnet protocol 

recommendations. So, the FTP commands are Telnet character strings (in NVT-ASCII 

code) ending in the Telnet end of line code (i.e. the sequence <CR>+<LF>,Carriage 

Return followed by the Line Feed character, noted <CRLF>).  

If the FTP command has a parameter, this is separated from the command by a space 

(<SP>). 

FTP commands make it possible to specify: 

 The port used 

 The method of data transfer. 

 Data structure 

 The nature of the action to be conducted (Retrieve, List, Store, etc.) 

There are three different types of FTP commands: 



 Access control commands 

 Transfer parameter commands 

 FTP service commands 

Access control commands 

Command Description 

USER 

Character string allowing the user to be identified. User 

identification is necessary to establish communication over the 

data channel. 

PASS 

Character string specifying the user's password. This command 

must immediately precede the USER command. It falls to the 

client to hide the display of this command for security reasons. 

ACCT 

Character string representing the user's account. The command 

is generally not necessary. During the response accepting the 

password, if the response is 230 this stage is not necessary, if 

the response is 332, it is. 

CWD 

Change Working Directory: this command enables the current 

directory to be changed. This command requires the directory's 

access path to be fulfilled as an argument. 

CDUP 

Change to Parent Directory: this command allows you to go 

back to the parent directory. It was introduced to solve 

problems of naming the parent directory according to the 

system (generally ".."). 

SMNT Structure Mount: 

REIN Reinitialize: 

QUIT 

Command enabling the current session to be terminated. The 

server waits to finish the transfer in progress if the need arises, 

then supplies a response before closing the connection. 

Transfer parameter commands 

Command Description 

PORT Character string allowing the port number used to be specified. 

PASV 
Command making it possible to indicate to the DTP server to 

stand by for a connection on a specific port chosen randomly 



from among the available ports. The response to this command 

is the IP address of the machine and port. 

TYPE 
This command enables the type of format in which the data will 

be sent to be specified. 

STRU 
Telnet character specifying the file structure (F for File, R 

for Record, P forPage). 

MODE 
Telnet character specifying data transfer method (S for Stream, B 

for Block, C for Compressed). 

FTP service commands 

Command Description 

RETR 
This command (RETRIEVE) asks the server DTP for a copy of the 

file whose access path is given in the parameters. 

STOR 

This command (store) asks the server DTP to accept the data 

sent over the data channel and store them in a file bearing the 

name given in the parameters. If the file does not exist, the 

server creates it, if not it overwrites it. 

STOU 

This command is identical to the previous one, only it asks the 

sever to create a file where the name is unique. The name of the 

file is returned in the response. 

APPE 

Thanks to this command (append) the data sent is concatenated 

into the file bearing the name given in the parameter if it 

already exists, if not, it is created. 

ALLO 

This command (allocate) asks the server to plan a storage space 

big enough to hold the file whose name is given in the 

argument. 

REST 

This command (restart) enables a transfer to be restarted from 

where it stopped. To do so, the command sends the marker 

representing the position in the file where the transfer had been 

interrupted in the parameter. This command must immediately 

follow a transfer command. 

RNFR 

This command (rename from) enables a file to be renamed. In 

the parameters it indicates the name of the file to be renamed 

and must be immediately followed by the RNTO command. 



RNTO 

This command (rename to) enables a file to be renamed. In the 

parameters it indicates the name of the file to be renamed and 

must be immediately followed by the RNFR command. 

ABOR 

This command (abort) tells the server DTP to abandon all 

transfers associated with the previous command. If no data 

connection is open, the DTP sever does nothing, if not it closes 

it. The control channel however remains open. 

DELE 

This command (delete) allows a file to be deleted, the name of 

which is given in the parameters. This command is irreversible, 

confirmation can only be given at client level. 

RMD 

This command (remove directory) enables a directory to be 

deleted. The name of the directory to be deleted is indicated in 

the parameters. 

MKD 

This command (make directory) causes a directory to be 

created. The name of the directory to be created is indicated in 

the parameters. 

PWD 
This command (print working directory) makes it possible to 

resend the complete current directory path. 

LIST 

This command allows the list of files and directories present in 

the current directory to be resent. This is sent over the passive 

DTP. It is possible to place a directory name in the parameter of 

this command, the server DTP will send the list of files in the 

directory placed in the parameter. 

NLST 
This command (name list) enables the list of files and 

directories present in the current directory to be sent. 

SITE 
This command (site parameters) causes the server to offer 

specific services not defined in the FTP protocol. 

SYST 
This command (system) allows information on the remote server 

to be sent. 

STAT 

This command (status) makes it possible to transmit the status 

of the server, for example to know the progress of a current 

transfer. This command accepts an access path in the argument, 

it then returns the same information as LIST but over the control 

channel. 



HELP 
This command gives all the commands understood by the 

server. The information is returned on the control channel. 

NOOP 

This command (no operations) is only used to obtain an OK 

command from the server. It can only be used in order not to be 

disconnected after an excessive period of inactivity. 

The FTP responses 

The FTP responses make it possible to ensure synchronization between the client and 

FTP server. So, at each command sent by the client, the server will potentially carry out 

an action and systematically send back a response. 

The responses are made up of a 3 digit code indicating the way in which the command 

sent by the client has been processed. However, since this 3 digit code is hard to read 

for humans, it is accompanied by a text (Telnet character string separated from the 

numeric code by a space). 

The response codes are made up of 3 numbers the meanings of which are as follows: 

 The first number indicates the status of the response (success or fail) 

 The second number indicates what the response refers to. 

 The third number gives a more specific meaning (relative to each second digit) 

First number 

Digit Meaning Description 

1yz 
Preliminary 

positive response 

The action requested is in progress, a second 

response must be obtained before sending a 

second command 

2yz 
Positive fulfilment 

response 

The action requested has been fulfilled, a new 

command can be sent 

3yz 
Intermediary 

positive response 

The action request is temporarily suspended. 

Additional information is awaited from the client 

4yz 

Negative 

fulfilment 

response 

The action requested has not taken place because 

the command has temporarily not been accepted. 

The client is requested to try again later 

5yz 

Permanent 

negative 

response 

The action requested has not taken place because 

the command has not been accepted. The client is 

requested to formulate a different request 



Second number 

Digit Meaning Description 

x0z Syntax 
The action has a syntax error, or is a command 

not understood by the server 

x1z Information 
This is a response sending back information 

(for example a response to a STAT command) 

x2z Connections The response relates to the data channel 

x3z 
Authentication and 

accounts 

The response relates to the (USER/PASS) login 

or the request to change the account (CPT) 

x4z 
Not used by the FTP 

protocol 
  

x5z File system The response relates to the remote file system 

 

 

 

Source: http://en.kioskea.net/contents/272-ftp-protocol-file-transfer-protocol 

 


