
DISTRIBUTED APPLICATIONS VS. 

INTEGRATION AND COMMERCIAL 

MESSAGING SYSTEMS 

 

This article is about enterprise integration—how to integrate independent 

applications so that they can work together. An enterprise application often 

incorporates an n-tier architecture (a more sophisticated version of a client/server 

architecture) enabling it to be distributed across several computers. Even though 

this results in processes on different machines communicating with each other, this 

is application distribution, not application integration. 

Why is an n-tier architecture considered application distribution and not 

application integration? First, the communicating parts are tightly coupled—they 

dependent directly on each other, so that one tier cannot function without the 

others. Second, communication between tiers tends to be synchronous. Third, an 

application (n-tier or atomic) tends to have human users that will only accept rapid 

system response. 

In contrast, integrated applications are independent applications that can each run 

by itself, but coordinate with each other in a loosely coupled way. This enables 

each application to focus on one comprehensive set of functionality and yet 



delegate to other applications for related functionality. Integrated applications 

communicating asynchronously don’t have to wait for a response; they can proceed 

without a response or perform other tasks concurrently until the response is 

available. Integrated applications tend to have a broad time constraint, such that 

they can work on other tasks until a result becomes available, and therefore are 

more patient than most human users waiting real-time for a result. 

Commercial Messaging Systems 

The apparent benefits of integrating systems using an asynchronous messaging 

solution have opened up a significant market for software vendors creating 

messaging middleware and associated tools. We can roughly group the messaging 

vendors’ products into the following four categories: 

1. Operating Systems. Messaging has become such a common need that 

vendors have started to integrate the necessary software infrastructure into 

the operating system or database platform. For example, the Microsoft 

Windows 2000 and Windows XP operating systems include the Microsoft 

Message Queuing (MSMQ) service software. This service is accessible 

through a number of API’s, including COM components and 

the System.Messaging namespace, part of the Microsoft .NET platform. 

Similarly, Oracle offers Oracle AQ as part of its database platform. 



2. Application Servers. Sun Microsystems first incorporated the Java 

Messaging Service (JMS) into version 1.2 of the J2EE specification. Since 

then, virtually all J2EE application servers (such as IBM WebSphere, BEA 

WebLogic, etc.) provide an implementation for this specification. Also, Sun 

delivers a JMS reference implementation with the J2EE JDK. 

3. EAI Suites. Products from these vendors offer proprietary—but functionally 

rich—suites that encompass messaging, business process automation, 

workflow, portals, and other functions. Key players in this marketplace are 

IBM WebSphere MQ, Microsoft BizTalk, TIBCO, WebMethods, 

SeeBeyond, Vitria, CrossWorlds, and others. Many of these products include 

JMS as one of the many client API’s they support, while other vendors—

such as SonicSoftware and Fiorano—focus primarily on implementing JMS-

compliant messaging infrastructures. 

4. Web Services Toolkits. Web services have garnered a lot of interest in the 

enterprise integration communities. Standards bodies and consortia are 

actively working on standardizing reliable message delivery over web 

services (i.e., WS-Reliability, WS-ReliableMessaging, and ebMS). A 

growing number of vendors offer tools that implement routing, 

transformation, and management of web services-based solutions. 

Source: http://www.enterpriseintegrationpatterns.com/patterns/messaging/Introduction.html 


