
Digital logic functions 

We can construct simply logic functions for our hypothetical lamp circuit, using 

multiple contacts, and document these circuits quite easily and understandably with 

additional rungs to our original "ladder." If we use standard binary notation for the 

status of the switches and lamp (0 for unactuated or de-energized; 1 for actuated 

or energized), a truth table can be made to show how the logic works: 

 

Now, the lamp will come on if either contact A or contact B is actuated, because all 

it takes for the lamp to be energized is to have at least one path for current from 

wire L1 to wire 1. What we have is a simple OR logic function, implemented with 

nothing more than contacts and a lamp. 

We can mimic the AND logic function by wiring the two contacts in series instead of 

parallel: 



 

Now, the lamp energizes only if contact A and contact B are simultaneously 

actuated. A path exists for current from wire L1 to the lamp (wire 2) if and only 

ifboth switch contacts are closed. 

The logical inversion, or NOT, function can be performed on a contact input simply 

by using a normally-closed contact instead of a normally-open contact: 

 

Now, the lamp energizes if the contact is not actuated, and de-energizes when the 

contact is actuated. 

If we take our OR function and invert each "input" through the use of normally-

closed contacts, we will end up with a NAND function. In a special branch of 

mathematics known as Boolean algebra, this effect of gate function identity 

changing with the inversion of input signals is described by DeMorgan's Theorem, a 

subject to be explored in more detail in a later chapter. 



 

The lamp will be energized if either contact is unactuated. It will go out only 

if both contacts are actuated simultaneously. 

Likewise, if we take our AND function and invert each "input" through the use of 

normally-closed contacts, we will end up with a NOR function: 



 

A pattern quickly reveals itself when ladder circuits are compared with their logic 

gate counterparts: 

 Parallel contacts are equivalent to an OR gate. 

 Series contacts are equivalent to an AND gate. 

 Normally-closed contacts are equivalent to a NOT gate (inverter). 

We can build combinational logic functions by grouping contacts in series-parallel 

arrangements, as well. In the following example, we have an Exclusive-OR function 

built from a combination of AND, OR, and inverter (NOT) gates: 



 

The top rung (NC contact A in series with NO contact B) is the equivalent of the top 

NOT/AND gate combination. The bottom rung (NO contact A in series with NC 

contact B) is the equivalent of the bottom NOT/AND gate combination. The parallel 

connection between the two rungs at wire number 2 forms the equivalent of the OR 

gate, in allowing either rung 1 or rung 2 to energize the lamp. 

To make the Exclusive-OR function, we had to use two contacts per input: one for 

direct input and the other for "inverted" input. The two "A" contacts are physically 

actuated by the same mechanism, as are the two "B" contacts. The common 

association between contacts is denoted by the label of the contact. There is no 

limit to how many contacts per switch can be represented in a ladder diagram, as 

each new contact on any switch or relay (either normally-open or normally-closed) 

used in the diagram is simply marked with the same label. 

Sometimes, multiple contacts on a single switch (or relay) are designated by a 

compound labels, such as "A-1" and "A-2" instead of two "A" labels. This may be 

especially useful if you want to specifically designate which set of contacts on each 



switch or relay is being used for which part of a circuit. For simplicity's sake, I'll 

refrain from such elaborate labeling in this lesson. If you see a common label for 

multiple contacts, you know those contacts are all actuated by the same 

mechanism. 

If we wish to invert the output of any switch-generated logic function, we must use 

a relay with a normally-closed contact. For instance, if we want to energize a load 

based on the inverse, or NOT, of a normally-open contact, we could do this: 

 

We will call the relay, "control relay 1," or CR1. When the coil of CR1 (symbolized 

with the pair of parentheses on the first rung) is energized, the contact on the 

second rung opens, thus de-energizing the lamp. From switch A to the coil of CR1, 

the logic function is noninverted. The normally-closed contact actuated by relay coil 

CR1 provides a logical inverter function to drive the lamp opposite that of the 

switch's actuation status. 

Applying this inversion strategy to one of our inverted-input functions created 

earlier, such as the OR-to-NAND, we can invert the output with a relay to create a 

noninverted function: 



 

From the switches to the coil of CR1, the logical function is that of a NAND gate. 

CR1's normally-closed contact provides one final inversion to turn the NAND 

function into an AND function. 

 

REVIEW: 

 Parallel contacts are logically equivalent to an OR gate. 

 Series contacts are logically equivalent to an AND gate. 

 Normally closed (N.C.) contacts are logically equivalent to a NOT gate. 

 A relay must be used to invert the output of a logic gate function, while 

simple normally-closed switch contacts are sufficient to represent inverted 

gate inputs. 
 

 

 



Source: http://www.allaboutcircuits.com/vol_4/chpt_6/2.html 


