
CLASSICAL TCP IMPROVEMENTS

TCP Connection Creation

· Programming details later – for now we are concerned with the actual communication.

· A server accepts a connection.

· Must be looking for new connections!

· A client requests a connection.

· Must know where the server is!

 Client Starts

· A client starts by sending a SYN segment with the following information:

· Client’s ISN (generated pseudo-randomly)

· Maximum Receive Window for client.

· Optionally (but usually) MSS (largest datagram accepted).

· No payload! (Only TCP headers)

 Server Response

· When a waiting server sees a new connection request, the server sends back a SYN segment
with:

· Server’s ISN (generated pseudo-randomly)

· Request Number is Client ISN+1

· Maximum Receive Window for server.

· Optionally (but usually) MSS

· No payload! (Only TCP headers)

· When the Server’s SYN is received, the client sends back an ACK with:

· Acknowledgment Number is Server’s ISN+1

TCP 3-way handshake

· Client: “I want to talk, and I’m starting with byte number X”.
· Server: “OK, I’m here and I’ll talk. My first byte will be called number Y, and I know your first

byte will be number X+1”.
· Client: “Got it – you start at byte number Y+1”.
· Bill: “Monica, I’m afraid I’ll syn and byte your ack”

TCP Data and ACK

· Once the connection is established, data can be sent.
· Each data segment includes a sequence number identifying the first byte in the segment.
· Each segment (data or empty) includes a request number indicating what data has been

received

Buffering

· Keep in mind that TCP is part of the Operating System. The O.S. takes care of all these details
asynchronously.

· The TCP layer doesn’t know when the application will ask for any received data.
· TCP buffers incoming data so it’s ready when we ask for it.

TCP Buffers

· Both the client and server allocate buffers to hold incoming and outgoing data
· The TCP layer does this.
· Both the client and server announce with every ACK how much buffer space remains (the

Window field in a TCP segment).

 Send Buffers

· The application gives the TCP layer some data to send.
· The data is put in a send buffer, where it stays until the data is ACK’d.
· The TCP layer won’t accept data from the application unless (or until) there is buffer space.

ACKs

· A receiver doesn’t have to ACK every segment (it can ACK many segments with a single ACK
segment).

· Each ACK can also contain outgoing data (piggybacking).
· If a sender doesn’t get an ACK after some time limit, it resends the data.

TCP Segment Order

· Most TCP implementations will accept out-of-order segments (if there is room in the buffer).
· Once the missing segments arrive, a single ACK can be sent for the whole thing.
· Remember: IP delivers TCP segments, and IP is not reliable – IP datagrams can be lost or arrive

out of order.

Termination

· The TCP layer can send a RST segment that terminates a connection if something is wrong.
· Usually the application tells TCP to terminate the connection politely with a FIN segment.

TCP Sockets Programming

· Creating a passive mode (server) socket.
· Establishing an application-level connection.
· Sending/receiving data.
· Terminating a connection.

Establishing a passive mode TCP socket

Passive mode:

· Address already determined.
· Tell the kernel to accept incoming connection requests directed at the socket address.

3-way handshake

o Tell the kernel to queue incoming connections for us.

Accepting an incoming connection

· Once we start listening on a socket, the O.S. will queue incoming connections
o Handles the 3-way handshake
o Queues up multiple connections.

· When our application is ready to handle a new connection, we need to ask the O.S. for the next
connection.

 Terminating a TCP connection

· Either end of the connection can call the close() system call.
· If the other end has closed the connection, and there is no buffered data, reading from a TCP

socket returns 0 to indicate EOF

 Client Code

· TCP clients can connect to a server, which:
· takes care of establishing an endpoint address for the client socket.
· don’t need to call bind first, the O.S. will take care of assigning the local endpoint address (TCP

port number, IP address).
· Attempts to establish a connection to the specified server.

o 3-way handshake

 Reading from a TCP socket

· By default read() will block until data is available.
· Reading from a TCP socket may return less than max bytes (whatever is available).
· You must be prepared to read data 1 byte at a time!

Parithy
Typewritten Text
Source : https://tutor4cs.wordpress.com/2013/03/01/mobile-computing-lecture-notes-for-unit-5/

