
BINARY MORPHOLOGY – ATOMIC

OPERATIONS

Separable atomic operations with block Sels, Sel

decomposition, sequence interpreters and simplicity of use

With all the mechanisms set up for doing binary morphology with both rasterop and dwa,

and for doing grayscale morphology, it is important to add some machinery to make it

very easy to use for the situation where the Sels are linear operators of all HITS, which is

by far the most common usage. These linear operators can be used in "separable"

combinations, horizontal and vertical, to implement morphology with 2-dimensional

rectangular Sels of all HITS. We call these 2-dimensional Sels "bricks." Large linear Sels,

of which the bricks are composed, can themselves be decomposed for efficiency, and we

do this with 2-way composites, giving a computation savings for a linear Sel of length n of

about a factor of n / (2 * sqrt(n)) over the unary method without decomposition.

The machinery has two levels that are convenient for use: a lower level where the brick

Sel morphologyical operations are directly invoked, and a higher level that is an

interpreter to run a sequence of such operations. Specifically,

1. Atomic functions for brick Sels, using separability and optionally 2-way

composition.

2. A set of interpreters to implement a sequence of these atomic functions.

Atomic separable functions

There are five sets of atomic functions for brick Sels, all with similar interfaces:

 Grayscale morphological operations (in graymorph.c).

 Binary morphology using rasterops (the pix*Brick() functions in morph.c).

 Binary morphology using rasterops with 2-way Sel composition

(the pix*CompBrick() functions in morph.c).

 Binary morphology using dwa (the pix*BrickDwa() functions in morphdwa.c).

 Binary morphology using dwa with 2-way Sel composition

(the pix*CompBrickDwa() functions in morphdwa.c).

These all take the sizes of the horizontal and vertical dimensions of the structuring

element, and do separable implementions when both dimensions are greater than 1. They

are useful in their own right because they implement correct boundary conditions,

http://www.leptonica.com/grayscale-morphology.html

including safe closing if chosen. They also handle all intermediate images transparently,

of which there are several for separable openings and closings. And they don't require the

generation and destruction of Sels, as they make them internally and destroy them after

use. See the notes at the beginning of morph.c for usage.

For the operations using 2-way composable Sels, consider pixOpenCompBrick() as an

example. The results are identical to to the those of pixOpenBrick(), for sizes that are

exactly decomposed such that the product of factors in the former equals the Sel size of

the latter. We place constraints and penalties on the functions that choose how to do the

decomposition. The regression test prog/binmorph2_reg.cdemonstrates the result of

decomposition. For large Sels, the pix*CompBrick() functions are much more

efficient. prog/binmorph2_reg also tests the dwa composable Sel operations, such

aspixOpenCompBrickDwa().

The dwa brick morphological operations work on the set of linear Sels that are generated

by selaAddBasic(), and which are implemented in dwa by the functions in fmorphgen.1.c.

Look there to see which are available. If for some reason you want some other Sel, such as

sel_23h, which is not there, you can follow one of the prescriptions set out in morphdwa.c.

However, you will likely find that you don't need to do this, because the dwa operations

that use 2-way composable Sels will implement a close approximation to sel_23h. For

convenience, if you call the non-composite dwa version, such aspixCloseBrickDwa(), and

the Sel doesn't exist for it, it will automatically call the 2-way composite dwa

version, pixCloseCompBrickDwa().

Interpreters for sequences of atomic operations

To make these atomic functions even simpler to use, we provide interpreters for sequences

of morphological operations. For binary morphology, these sequences are combined with

rank reductions and replicative expansion. All the interpreters are in morphseq.c. The

morphological operations enabled by the sequences all use separable brick Sels. As with

the atomic brick dwa functions, the interpreters reduce the complexity of using a dwa

implementation to s single function invocation with a simple interface.

How do we test all this? A large regression test, prog/binmorph1_reg.c, tests all the binary

brick operations, including the 2-way Sel decomposition, along with their interpreted

sequences. Specifically, we test all morphological operations using:

 general rasterop

 brick rasterop (unary Sel)

 morph sequence of brick rasterop (unary Sel)

 morph sequence of composite brick rasterop

 brick dwa

 morph sequence of brick dwa

 morph sequence of composite brick dwa

A second regression test, prog/binmorph2_reg.c, compares the results of the 2-way

composite separable brick implementations (both rasterop and dwa) against the unary

brick implementations. A third regression test, prog/binmorph3_reg.c, compares rasterop

brick (separable and non-separable) with various implementations of separable dwa

bricks.

Our default boundary condition is asymmetric (0 for both dilation and erosion), but you

can toggle this to test all functions with using the symmetric b.c. as well.

Source : http://www.leptonica.com/binary-morphology.html

