BASIC COMBINATIONS OF SECURITY ASSOCIATIONS

The IPSec Architecture document lists four examples of combinations of SAs that must be supported by compliant IPSec hosts (e.g. workstation, server) or security gateways (e.g. firewall, router). These are illustrated in Figure 1.10. The lower part of each case in the figure represents the physical connectivity of the elements; the upper part represents logical connectivity via one or more nested SAs. Each SA can be either AH or ESP. For host-to-host SAs, the mode may be either transport or tunnel; otherwise it must be tunnel mode.

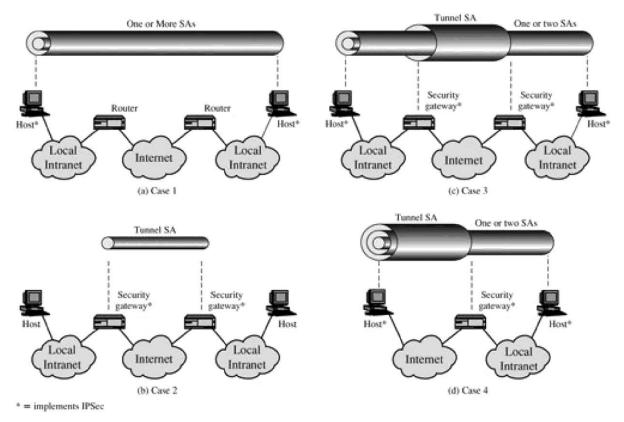


Figure 1.10 Basic Combinations of Security Associations

In **Case 1**, all security is provided between end systems that implement IPSec. For any two end systems to communicate via an SA, they must share the appropriate secret keys. Among the possible combinations:

- a. AH in transport mode
- b. ESP in transport mode
- c. ESP followed by AH in transport mode (an ESP SA inside an AH SA)

d. Any one of a, b, or c inside an AH or ESP in tunnel mode

We have already discussed how these various combinations can be used to support authentication, encryption, authentication before encryption, and authentication after encryption. For **Case 2**, security is provided only between gateways (routers, firewalls, etc.) and no hosts implement IPSec. This case illustrates simple virtual private network support. The security architecture document specifies that only a single tunnel SA is needed for this case.

The tunnel could support AH, ESP, or ESP with the authentication option. Nested tunnels are not required because the IPSec services apply to the entire inner packet.

Case 3 builds on Case 2 by adding end-to-end security. The same combinations discussed for cases 1 and 2 are allowed here. The gateway-to-gateway tunnel provides either authentication or confidentiality or both for all traffic between end systems. When the gateway-to-gateway tunnel is ESP, it also provides a limited form of traffic confidentiality. Individual hosts can implement any additional. IPSec services required for given applications or given users by means of end-to-end SAs.

Case 4 provides support for a remote host that uses the Internet to reach an organization's firewall and then to gain access to some server or workstation behind the firewall. Only tunnel mode is required between the remote host and the firewall. As in Case 1, one or two SAs may be used between the remote host and the local host.

Key Management:

The key management portion of IPSec involves the determination and distribution of secret keys. A typical requirement is four keys for communication between two applications: transmit and receive pairs for both AH and ESP. The IPSec Architecture document mandates support for two types of key management:

- **Manual:** A system administrator manually configures each system with its own keys and with the keys of other communicating systems. This is practical for small, relatively static environments.
- Automated: An automated system enables the on-demand creation of keys for SAs and facilitates the use of keys in a large distributed system with an evolving configuration.

The default automated key management protocol for IPSec is referred to as ISAKMP/Oakley and consists of the following elements:

Source : http://elearningatria.files.wordpress.com/2013/10/ise-viii-information-and-networksecurity-06is835-notes.pdf