
Application-Level Protocols

A client and a server exchange messages consisting of message types and message

data. This requires design of a suitable message exchange protocol. This chapter looks

at some of the issues involved in this, and gives a complete example of a simple

client-server application.

Introduction

A client and server need to exchange information via messages. TCP and UDP

provide the transport mechanisms to do this. The two processes also need to have a

protocol in place so that message exchange can take place meaningfully. A protocol

defines what type of conversation can take place between two components of a

distributed application, by specifying messages, data types, encoding formats and so

on.

Protocol Design

There are many possibilities and issues to be decided on when designing a protocol.

Some of the issues include:

 Is it to be broadcast or point to point?

Broadcast must be UDP, local multicast or the more experimental MBONE.

Point to point could be either TCP or UDP.

 Is it to be stateful vs stateless?

Is it reasonable for one side to maintain state about the other side? It is often

simpler to do so, but what happens if something crashes?

 Is the transport protocol reliable or unreliable?

Reliable is often slower, but then you don't have to worry so much about lost

messages.

 Are replies needed?

If a reply is needed, how do you handle a lost reply? Timeouts may be used.

 What data format do you want?

Two common possibilities are MIME or byte encoding.

 Is your communication bursty or steady stream?

Ethernet and the Internet are best at bursty traffic. Steady stream is needed for

video streams and particularly for voice. If required, how do you manage

Quality of Service (QoS)?

 Are there multiple streams with synchronisation required?

Does the data need to be synchronised with anything? e.g. video and voice.

 Are you building a standalone application or a library to be used by others?

The standards of documentation required might vary.

Version control

A protocol used in a client/server system will evolve over time, changing as the

system expands. This raises compatability problems: a version 2 client will make

requests that a version 1 server doesn't understand, whereas a version 2 server will

send replies that a version 1 client won't understand.

Each side should ideally be able to understand messages for its own version and all

earlier ones. It should be able to write replies to old style queries in old style response

format.

The ability to talk earlier version formats may be lost if the protocol changes too

much. In this case, you need to be able to ensure that no copies of the earlier version

still exist - and that is generally imposible.

Part of the protocol setup should involve version information.

The Web

The Web is a good example of a system that is messed up by different versions. The

protocol has been through three versions, and most servers/browsers now use the

latest version. The version is given in each request

request version

GET / pre 1.0

GET / HTTP/1.0 HTTP 1.0

GET / HTTP/1.1 HTTP 1.1

But the content of the messages has been through a large number of versions:

 HTML versions 1-4 (all different), with version 5 on the horizon;

 non-standard tags recognised by different browsers;

 non-HTML documents often require content handlers that may or may not be

present - does your browser have a handler for Flash?

 inconsistent treatment of document content (e.g. some stylesheet content will

crash some browsers)

 Different support for JavaScript (and different versions of JavaScript)

 Different runtime engines for Java

 Many pages do not conform to any HTML versions (e.g. with syntax errors)

Message Format

In the last chapter we discussed some possibilities for representing data to be sent

across the wire. Now we look one level up, to the messages which may contain such

data.

 The client and server will exchange messages with different meanings. e.g.

o Login request,

o get record request,

o login reply,

o record data reply.

 The client will prepare a request which must be understood by the server.

 The server will prepare a reply which must be understood by the client.

Commonly, the first part of the message will be a message type.

 Client to server
 LOGIN name passwd

 GET cpe4001 grade

 Server to client
 LOGIN succeeded

 GRADE cpe4001 D

The message types can be strings or integers. e.g. HTTP uses integers such as 404 to

mean "not found" (although these integers are written as strings). The messages from

client to server and vice versa are disjoint: "LOGIN" from client to server is different

to "LOGIN" from server to client.

Data Format

There are two main format choices for messages: byte encoded or character encoded.

Byte format

In the byte format

 the first part of the message is typically a byte to distinguish between message

types.

 The message handler would examine this first byte to distinguish message type

and then perform a switch to select the appropriate handler for that type.

 Further bytes in the message would contain message content according to a pre-

defined format (as discussed in the previous chapter).

The advantages are compactness and hence speed. The disadvantages are caused by

the opaqueness of the data: it may be harder to spot errors, harder to debug, require

special purpose decoding functions. There are many examples of byte-encoded

formats, including major protocols such as DNS and NFS , upto recent ones such as

Skype. Of course, if your protocol is not publicly specified, then a byte format can

also make it harder for others to reverse-engineer it!

Pseudocode for a byte-format server is

 handleClient(conn) {

 while (true) {

 byte b = conn.readByte()

 switch (b) {

 case MSG_1: ...

 case MSG_2: ...

 ...

 }

 }

 }

Go has basic support for managing byte streams. The interface Conn has methods

(c Conn) Read(b []byte) (n int, err os.Error)

(c Conn) Write(b []byte) (n int, err os.Error)

and these methods are implemented by TCPConn and UDPConn.

Character Format

In this mode, everything is sent as characters if possible. For example, an integer 234

would be sent as, say, the three characters '2', '3' and '4' instead of the one byte 234.

Data that is inherently binary may be base64 encoded to change it into a 7-bit format

and then sent as ASCII characters, as discussed in the previous chapter.

In character format,

 A message is a sequence of one or more lines

The start of the first line of the message is typically a word that represents the

message type.

 String handling functions may be used to decode the message type and data.

 The rest of the first line and successive lines contain the data.

 Line-oriented functions and line-oriented conventions are used to manage this.

Pseudocode is

handleClient() {

 line = conn.readLine()

 if (line.startsWith(...) {

 ...

 } else if (line.startsWith(...) {

 ...

 }

}

Character formats are easier to setup and easier to debug. For example, you can

use telnet to connect to a server on any port, and send client requests to that server. It

isn't so easy the other way, but you can use tools like tcpdump to snoop on TCP traffic

and see immediately what clients are sending to servers.

There is not the same level of support in Go for managing character streams. There

are significant issues with character sets and character encodings, and we will explore

these issues in a later chapter.

If we just pretend everything is ASCII, like it was once upon a time, then character

formats are quite straightforward to deal with. The principal complication at this level

is the varying status of "newline" across different operating systems. Unix uses the

single character '\n'. Windows and others (more correctly) use the pair "\r\n". On the

internet, the pair "\r\n" is most common - Unix systems just need to take care that they

don't assume '\n'.

Simple Example

This example deals with a directory browsing protocol - basically a stripped down

version of FTP, but without even the file transfer part. We only consider listing a

directory name, listing the contents of a directory and changing the current directory -

all on the server side, of course. This is a complete worked example of creating all

components of a client-server application. It is a simple program which includes

messages in both directions, as well as design of messaging protocol.

Look at a simple non-client-server program that allows you to list files in a directory

and change and print the directory on the server. We omit copying files, as that adds

to the length of the program without really introducing important concepts. For

simplicity, all filenames will be assumed to be in 7-bit ASCII. If we just looked at a

standalone application first, then the pseudo-code would be

read line from user

while not eof do

 if line == dir

 list directory

 else

 if line == cd <dir>

 change directory

 else

 if line == pwd

 print directory

 else

 if line == quit

 quit

 else

 complain

 read line from user

A non-distributed application would just link the UI and file access code

In a client-server situation, the client would be at the user end, talking to a server

somewhere else. Aspects of this program belong solely at the presentation end, such

as getting the commands from the user. Some are messages from the client to the

server, some are solely at the server end.

For a simple directory browser, assume that all directories and files are at the server

end, and we are only transferring file information from the server to the client. The

client side (including presentation aspects) will become

read line from user

while not eof do

 if line == dir

 list directory

 else

 if line == cd <dir>

 change directory

 else

 if line == pwd

 print directory

 else

 if line == quit

 quit

 else

 complain

 read line from user

where the italicised lines involve communication with the server.

Alternative presentation aspects

A GUI program would allow directory contents to be displayed as lists, for files to be

selected and actions such as change directory to be be performed on them. The client

would be controlled by actions associated with various events that take place in

graphical objects. The pseudo-code might look like

change dir button:

 if there is a selected file

 change directory

 if successful

 update directory label

 list directory

 update directory list

The functions called from the different UI's should be the same - changing the

presentation should not change the networking code

Protocol - informal

client request server response

dir send list of files

cd <dir>

change dir

send error if failed

send ok if succeed

pwd send current directory

quit quit

Text protocol

This is a simple protocol. The most complicated data structure that we need to send is

an array of strings for a directory listing. In this case we don't need the heavy duty

serialisation techniques of the last chapter. In this case we can use a simple text

format.

But even if we make the protocol simple, we still have to specify it in detail. We

choose the following message format:

 All messages are in 7-bit US-ASCII

 The messages are case-sensitive

 Each message consists of a sequence of lines

 The first word on the first line of each message describes the message type. All

other words are message data

 All words are separated by exactly one space character

 Each line is terminated by CR-LF

Some of the choices made above are weaker in real-life protocols. For example

 Message types could be case-insensitive. This just requires mapping message

type strings down to lower-case before decoding

 An arbitrary amount of white space could be left between words. This just adds

a little more complication, compressing white space

 Continuation characters such as '\' can be used to break long lines over several

lines. This starts to make processing more complex

 Just a '\n' could be used as line terminator, as well as '\r\n'. This makes

recognising end of line a bit harder

All of these variations exist in real protocols. Cumulatively, they make the string

processing just more complex than in our case.

client request server response

send "DIR"
send list of files, one per line

terminated by a blank line

send "CD <dir>"

change dir

send "ERROR" if failed

send "OK"

send "PWD" send current working directory

Server code

/* FTP Server

 */

package main

import (

 "fmt"

 "net"

 "os"

)

const (

 DIR = "DIR"

 CD = "CD"

 PWD = "PWD"

)

func main() {

 service := "0.0.0.0:1202"

 tcpAddr, err := net.ResolveTCPAddr("tcp", service)

 checkError(err)

 listener, err := net.ListenTCP("tcp", tcpAddr)

 checkError(err)

 for {

 conn, err := listener.Accept()

 if err != nil {

 continue

 }

 go handleClient(conn)

 }

}

func handleClient(conn net.Conn) {

 defer conn.Close()

 var buf [512]byte

 for {

 n, err := conn.Read(buf[0:])

 if err != nil {

 conn.Close()

 return

 }

 s := string(buf[0:n])

 // decode request

 if s[0:2] == CD {

 chdir(conn, s[3:])

 } else if s[0:3] == DIR {

 dirList(conn)

 } else if s[0:3] == PWD {

 pwd(conn)

 }

 }

}

func chdir(conn net.Conn, s string) {

 if os.Chdir(s) == nil {

 conn.Write([]byte("OK"))

 } else {

 conn.Write([]byte("ERROR"))

 }

}

func pwd(conn net.Conn) {

 s, err := os.Getwd()

 if err != nil {

 conn.Write([]byte(""))

 return

 }

 conn.Write([]byte(s))

}

func dirList(conn net.Conn) {

 defer conn.Write([]byte("\r\n"))

 dir, err := os.Open(".")

 if err != nil {

 return

 }

 names, err := dir.Readdirnames(-1)

 if err != nil {

 return

 }

 for _, nm := range names {

 conn.Write([]byte(nm + "\r\n"))

 }

}

func checkError(err error) {

 if err != nil {

 fmt.Println("Fatal error ", err.Error())

 os.Exit(1)

 }

}

Client code

/* FTPClient

 */

package main

import (

 "fmt"

 "net"

 "os"

 "bufio"

 "strings"

 "bytes"

)

// strings used by the user interface

const (

 uiDir = "dir"

 uiCd = "cd"

 uiPwd = "pwd"

 uiQuit = "quit"

)

// strings used across the network

const (

 DIR = "DIR"

 CD = "CD"

 PWD = "PWD"

)

func main() {

 if len(os.Args) != 2 {

 fmt.Println("Usage: ", os.Args[0], "host")

 os.Exit(1)

 }

 host := os.Args[1]

 conn, err := net.Dial("tcp", host+":1202")

 checkError(err)

 reader := bufio.NewReader(os.Stdin)

 for {

 line, err := reader.ReadString('\n')

 // lose trailing whitespace

 line = strings.TrimRight(line, " \t\r\n")

 if err != nil {

 break

 }

 // split into command + arg

 strs := strings.SplitN(line, " ", 2)

 // decode user request

 switch strs[0] {

 case uiDir:

 dirRequest(conn)

 case uiCd:

 if len(strs) != 2 {

 fmt.Println("cd <dir>")

 continue

 }

 fmt.Println("CD \"", strs[1], "\"")

 cdRequest(conn, strs[1])

 case uiPwd:

 pwdRequest(conn)

 case uiQuit:

 conn.Close()

 os.Exit(0)

 default:

 fmt.Println("Unknown command")

 }

 }

}

func dirRequest(conn net.Conn) {

 conn.Write([]byte(DIR + " "))

 var buf [512]byte

 result := bytes.NewBuffer(nil)

 for {

 // read till we hit a blank line

 n, _ := conn.Read(buf[0:])

 result.Write(buf[0:n])

 length := result.Len()

 contents := result.Bytes()

 if string(contents[length-4:]) == "\r\n\r\n" {

 fmt.Println(string(contents[0 : length-4]))

 return

 }

 }

}

func cdRequest(conn net.Conn, dir string) {

 conn.Write([]byte(CD + " " + dir))

 var response [512]byte

 n, _ := conn.Read(response[0:])

 s := string(response[0:n])

 if s != "OK" {

 fmt.Println("Failed to change dir")

 }

}

func pwdRequest(conn net.Conn) {

 conn.Write([]byte(PWD))

 var response [512]byte

 n, _ := conn.Read(response[0:])

 s := string(response[0:n])

 fmt.Println("Current dir \"" + s + "\"")

}

func checkError(err error) {

 if err != nil {

 fmt.Println("Fatal error ", err.Error())

 os.Exit(1)

 }

}

State

Applications often make use of state information to simplify what is going on. For

example

 Keeping file pointers to current file location

 Keeping current mouse position

 Keeping current customer value.

In a distributed system, such state information may be kept in the client, in the server,

or in both.

The important point is to whether one process is keeping state information

about itself or about the other process. One process may keep as much state

information about itself as it wants, without causing any problems. If it needs to keep

information about the state of the other process, then problems arise: the process'

actual knowledge of the state of the other may become incorrect. This can be caused

by loss of messages (in UDP), by failure to update, or by s/w errors.

An example is reading a file. In single process applications the file handling code runs

as part of the application. It maintains a table of open files and the location in each of

them. Each time a read or write is done this file location is updated. In the DCE file

system, the file server keeps track of a client's open files, and where the client's file

pointer is. If a message could get lost (but DCE uses TCP) these could get out of

synch. If the client crashes, the server must eventually timeout on the client's file

tables and remove them.

In NFS, the server does not maintain this state. The client does. Each file access from

the client that reaches the server must open the file at the appropriate point, as given

by the client, to perform the action.

If the server maintains information about the client, then it must be able to recover if

the client crashes. If information is not saved, then on each transaction the client must

transfer sufficient information for the server to function.

If the connection is unreliable, then additional handling must be in place to ensure that

the two do not get out of synch. The classic example is of bank account transactions

where the messages get lost. A transaction server may need to be part of the client-

server system.

Application State Transition Diagram

A state transition diagram keeps track of the current state of an application and the

changes that move it to new states.

Example: file transfer with login:

This can also be expressed as a table

Current state Transition Next state

login
login failed login

login succeeded file transfer

file transfer

dir file transfer

get file transfer

logout login

quit -

Client state transition diagrams

The client state diagram must follow the application diagram. It has more detail

though: it writes and then reads

Current state Write Read Next state

login LOGIN name password
FAILED login

SUCCEEDED file transfer

file transfer

CD dir
SUCCEEDED file transfer

FAILED file transfer

GET filename
#lines + contents file transfer

ERROR file transfer

DIR
#files + filenames file transfer

ERROR file transfer

quit none quit

logout none login

Server state transition diagrams

The server state diagram must also follow the application diagram. It also has more

detail: it reads and then writes

Current state Read Write Next state

login LOGIN name password
FAILED login

SUCCEEDED file transfer

file transfer

CD dir
SUCCEEDED file transfer

FAILED file transfer

GET filename
#lines + contents file transfer

ERROR file transfer

DIR
#files + filenames file transfer

ERROR file transfer

quit none quit

logout none login

Server pseudocode

state = login

while true

 read line

 switch (state)

 case login:

 get NAME from line

 get PASSWORD from line

 if NAME and PASSWORD verified

 write SUCCEEDED

 state = file_transfer

 else

 write FAILED

 state = login

 case file_transfer:

 if line.startsWith CD

 get DIR from line

 if chdir DIR okay

 write SUCCEEDED

 state = file_transfer

 else

 write FAILED

 state = file_transfer

 ...

We don't give the actual code for this server or client since it is pretty straightforward.

Summary

Building any application requires design decisions before you start writing code. For

distributed applications you have a wider range of decisions to make compared to

standalone systems. This chapter has considered some of those aspects and

demonstrated what the resultant code might look like.

Source: http://jan.newmarch.name/go/protocol/chapter-protocol.html

